Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2016_8_1_a1, author = {Konstantin Avrachenkov and Vikas Vikram Singh}, title = {Stochastic coalitional better-response dynamics and stable equilibrium}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {4--26}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a1/} }
TY - JOUR AU - Konstantin Avrachenkov AU - Vikas Vikram Singh TI - Stochastic coalitional better-response dynamics and stable equilibrium JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2016 SP - 4 EP - 26 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a1/ LA - ru ID - MGTA_2016_8_1_a1 ER -
%0 Journal Article %A Konstantin Avrachenkov %A Vikas Vikram Singh %T Stochastic coalitional better-response dynamics and stable equilibrium %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2016 %P 4-26 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a1/ %G ru %F MGTA_2016_8_1_a1
Konstantin Avrachenkov; Vikas Vikram Singh. Stochastic coalitional better-response dynamics and stable equilibrium. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 8 (2016) no. 1, pp. 4-26. http://geodesic.mathdoc.fr/item/MGTA_2016_8_1_a1/
[1] Aumann R. J., “Acceptable points in general cooperative $n$-person games”, Contribution to the theory of game IV, Annals of Mathematical Study, 40, eds. R. D. Luce, A. W. Tucker, 1959, 287–324 | MR | Zbl
[2] Avrachenkov K., Filar J., Haviv M., “Singular perturbations of Markov chains and decision processes”, Handbook of Markov Decision Processes, International Series in Operations Research and Management Science, Springer, 2002 | MR | Zbl
[3] Avrachenkov K., Filar J., Howlett P., Analytic perturbation theory and its applications, SIAM, 2013 | MR | Zbl
[4] Avrachenkov K., Neglia G., Singh V. V., “Network formation games with teams”, Journal of Dynamics and Games (to appear)
[5] Demange G., Wooders M. (eds.), Group Formation in Economics: Networks, Clubs, and Coalitions, Cambridge University Press, 2005
[6] Dutta B., Jackson M. O. (eds.), Networks and Groups: Models of Strategic Formation, Springer, Berlin–Heidelberg, 2003
[7] Dutta B., Mutuswami S., “Stable networks”, Journal of Economic Theory, 76 (1997), 322–344 | DOI | MR | Zbl
[8] Foster D., Young H. P., “Stochastic evolutionary game dynamics”, Theoretical Population Biology, 38:2 (1990), 219–232 | DOI | MR | Zbl
[9] Fudenberg D., Imhof L. A., “Imitation processes with small mutations”, Journal of Economic Theory, 131 (2006), 251–262 | DOI | MR | Zbl
[10] Fudenberg D., Nowak M. A., Taylor C., Imhof L. A., “Evolutionary game dynamics in finite populations with strong selection and weak mutation”, Theoretical Population Biology, 70 (2006), 352–363 | DOI | Zbl
[11] Gale D., Shapley L. S., “College admissions and the stability of marriage”, The Americal Mathematical Monthly, 69:1 (1962), 9–15 | DOI | MR | Zbl
[12] Harsanyi J. C., Selten R., A general theory of equilibrium selection in games, MIT Press, 1988 | MR | Zbl
[13] Jackson M. O., Social and Economic Networks, Princeton University Press, 2010 | MR | Zbl
[14] Jackson M. O., van den Nouweland A., “Strongly stable networks”, Games and Economic Behavior, 51:2 (2005), 420–444 | DOI | MR | Zbl
[15] Jackson M. O., Watts A., “The evolution of social and economic networks”, Journal of Economic Theory, 106:2 (2002), 265–295 | DOI | MR | Zbl
[16] Jackson M. O., Watts A., “On the formation of interaction networks in social coordination games”, Games and Economic Behavior, 41 (2002), 265–291 | DOI | MR | Zbl
[17] Jackson M. O., Wolinsky A., “A strategic model of social and economic networks”, Journal of Economic Theory, 71:1 (1996), 44–74 | DOI | MR | Zbl
[18] Kandori M., Mailath G. J., Rob R., “Learning, mutation, and long run equilibria in games”, Econometrica, 61:1 (1993), 29–56 | DOI | MR | Zbl
[19] Kemeny J. G., Snel J. L., Finite Markov Chains, Springer-Verlag, 1976 | MR | Zbl
[20] Klaus B., Klijn F., Walzl M., “Stochastic stability for roommate markets”, Journal of Economic Theory, 145:6 (2010), 2218–2240 | DOI | MR | Zbl
[21] Newton J., “Coalitional stochastic stability”, Games and Economic Behavior, 75:2 (2012), 842–854 | DOI | MR | Zbl
[22] Newton J., “Recontracting and stochastic stability in cooperative games”, Journal of Economic Theory, 147 (2012), 364–381 | DOI | MR | Zbl
[23] Newton J., Angus S. D., “Coalitions, tipping points and the speed of evolution”, Journal of Economic Theory, 157 (2015), 172–187 | DOI | MR | Zbl
[24] Newton J., Sawa R., “A one-shot deviation principle for stability in matching problems”, Journal of Economic Theory, 157 (2015), 1–27 | DOI | MR | Zbl
[25] Roth A., Sotomayor M., Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Cambridge University Press, 1992 | MR | Zbl
[26] Sawa R., “Coalitional stochastic stability in games, networks and markets”, Games and Economic Behavior, 88 (2014), 90–111 | DOI | MR | Zbl
[27] Young H. P., “The evolution of conventions”, Econometrica, 61:1 (1993), 57–84 | DOI | MR | Zbl