Strategic stability in linear-quadratic differential games with nontransferable payoffs
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 4, pp. 56-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of strategically supported cooperation in linear-quadratic differential games with nontranferable payoffs is considered. It is assumed, that the player uses the payoff distribution procedure to get the individual rationality of cooperative solution. To punish those who violate cooperative agreement, the special game, which differs from initial one only by the players' payoffs on cooperative trajectory is constructed. It is shown that in the new game there exists an $\varepsilon$-equilibrium with players' payoffs equal to corresponding cooperative players' payoffs in initial game.
Keywords: linear-quadratic game, differential game, cooperative game, strategic stability.
Mots-clés : Pareto-optimal solution
@article{MGTA_2015_7_4_a4,
     author = {Anna V. Tur},
     title = {Strategic stability in linear-quadratic differential games with nontransferable payoffs},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {56--70},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/}
}
TY  - JOUR
AU  - Anna V. Tur
TI  - Strategic stability in linear-quadratic differential games with nontransferable payoffs
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 56
EP  - 70
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/
LA  - ru
ID  - MGTA_2015_7_4_a4
ER  - 
%0 Journal Article
%A Anna V. Tur
%T Strategic stability in linear-quadratic differential games with nontransferable payoffs
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 56-70
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/
%G ru
%F MGTA_2015_7_4_a4
Anna V. Tur. Strategic stability in linear-quadratic differential games with nontransferable payoffs. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 4, pp. 56-70. http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/

[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[2] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 102–117

[3] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[4] Smirnov E. Ya., Stabilizatsiya programmnykh dvizhenii, Izdatelstvo S.-Peterburgskogo universiteta, SPb., 1997

[5] Başar T., Olsder G. J., Dynamic Noncooperative Game Theory, Classics in Applied Mathematics, 2nd edition, SIAM, Philadelphia, 1999 | MR | Zbl

[6] Engwerda J. C., LQ Dynamic Optimization and Differential Games, John Wiley Sons, Chichester, 2005

[7] Nash J., “Non-cooperative games”, Ann. Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[8] Petrosyan L. A., “Agreeable Solutions in Differential Games”, International Journal of Mathematics, Game Theory and Algebra, 7 (1997), 165–177 | MR

[9] Pareto V., Cours d'$\acute{e}$conomie politique, F. Rouge, Lausanne, 1896–1897

[10] Yeung D. W. K., Petrosyan L. A., “A Time-consistent solution formula for bargaining problem in differential games”, Int. Game Theory Rev., 16:4 (2014), 1450016 | DOI | MR | Zbl