Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2015_7_4_a4, author = {Anna V. Tur}, title = {Strategic stability in linear-quadratic differential games with nontransferable payoffs}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {56--70}, publisher = {mathdoc}, volume = {7}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/} }
TY - JOUR AU - Anna V. Tur TI - Strategic stability in linear-quadratic differential games with nontransferable payoffs JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2015 SP - 56 EP - 70 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/ LA - ru ID - MGTA_2015_7_4_a4 ER -
Anna V. Tur. Strategic stability in linear-quadratic differential games with nontransferable payoffs. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 4, pp. 56-70. http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a4/
[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967
[2] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 102–117
[3] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012
[4] Smirnov E. Ya., Stabilizatsiya programmnykh dvizhenii, Izdatelstvo S.-Peterburgskogo universiteta, SPb., 1997
[5] Başar T., Olsder G. J., Dynamic Noncooperative Game Theory, Classics in Applied Mathematics, 2nd edition, SIAM, Philadelphia, 1999 | MR | Zbl
[6] Engwerda J. C., LQ Dynamic Optimization and Differential Games, John Wiley Sons, Chichester, 2005
[7] Nash J., “Non-cooperative games”, Ann. Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl
[8] Petrosyan L. A., “Agreeable Solutions in Differential Games”, International Journal of Mathematics, Game Theory and Algebra, 7 (1997), 165–177 | MR
[9] Pareto V., Cours d'$\acute{e}$conomie politique, F. Rouge, Lausanne, 1896–1897
[10] Yeung D. W. K., Petrosyan L. A., “A Time-consistent solution formula for bargaining problem in differential games”, Int. Game Theory Rev., 16:4 (2014), 1450016 | DOI | MR | Zbl