On a approach to the construction of characteristic function for cooperative differential games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 4, pp. 19-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a novel approach to the construction of characteristic functions for cooperative differential games. The characteristic function of coalition $S$ is computed in two stages: first, optimal control strategies maximizing the total payoff of the players; next, the cooperative optimal strategies are used by the players from the coalition $S$ while the left-out players from $N \setminus S$ use the strategies minimizing the total payoff of the players from $S$. The characteristic function defined in this way is superadditive. In addition, it possesses a number of other useful properties. To illustrate this result we compute characteristic function for a specific differential game of pollution control.
Keywords: cooperative games, characteristic function, differential games, superadditivity.
@article{MGTA_2015_7_4_a2,
     author = {Ekaterina V. Gromova and Leon A. Petrosyan},
     title = {On a approach to the construction of characteristic function for cooperative differential games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {19--39},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a2/}
}
TY  - JOUR
AU  - Ekaterina V. Gromova
AU  - Leon A. Petrosyan
TI  - On a approach to the construction of characteristic function for cooperative differential games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 19
EP  - 39
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a2/
LA  - ru
ID  - MGTA_2015_7_4_a2
ER  - 
%0 Journal Article
%A Ekaterina V. Gromova
%A Leon A. Petrosyan
%T On a approach to the construction of characteristic function for cooperative differential games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 19-39
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a2/
%G ru
%F MGTA_2015_7_4_a2
Ekaterina V. Gromova; Leon A. Petrosyan. On a approach to the construction of characteristic function for cooperative differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 4, pp. 19-39. http://geodesic.mathdoc.fr/item/MGTA_2015_7_4_a2/

[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[2] Gromova E. V., Petrosyan L. A., “Silno dinamicheski ustoichivoe kooperativnoe reshenie v odnoi differentsialnoi igre upravleniya vrednymi vybrosami”, Upravlenie bolshimi sistemami, 55 (2015), 140–159

[3] Mazalov V. V., Matematicheskaya teoriya igr i ee prilozheniya, Lan, SPb., 2010

[4] Petrosyan L. A., Gromova E. V., “Dvukhurovnevaya kooperatsiya v koalitsionnykh differentsialnykh igrakh”, Trudy IMM UrO RAN, 20, no. 3, 2014, 193–203 | MR

[5] Petrosyan L. A., Danilov N. A., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 46–54

[6] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[7] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. univers., SPb., 2004

[8] Bass F. M., Krishamoorthy A., Prasad A., Sethi S. P., “Generic and brand advertising strategies in a dynamic duopoly”, Marketing Science, 24:4 (2005), 556–568 | DOI | MR

[9] Chander P., “The gamma-core and coalition formation”, International Journal of Game Theory, 35 (2007), 539–556 | DOI | MR | Zbl

[10] Dockner E. J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, 2000 | MR | Zbl

[11] Engwerda J., LQ dynamic optimization and differential games, John Wiley Sons, 2005

[12] Haurie A. et al., Games and dynamic games, World Scientific Books, 2012 | Zbl

[13] Jorgensen S., Gromova E., “Sustaining Cooperation in a Differential Game of Advertising Goodwill Accumulation”, EJOR, 2015 (to appear)

[14] Kostyunin S., Palestini A., Shevkoplyas E., “On a nonrenewable resource extraction game played by asymmetric firms”, SIAM Journal of Optimization Theory and Applications, 163:2 (2014), 660–673 | DOI | MR | Zbl

[15] Mazalov V., Rettieva A., “Fish wars with many players”, Int. Game Theory Rev., 12:4 (2010), 385–405 | DOI | MR | Zbl

[16] von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, 1953 | Zbl

[17] Ordeshook P. C., Game theory and political theory: An introduction, Cambridge University Press, 1986

[18] Petrosjan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. of Economic Dynamics and Control, 27:3 (2003), 381–398 | DOI | MR | Zbl

[19] Reddy P. V., Zaccour G., A friendly computable characteristic function, GERAD Research Report G-2014-78

[20] Yeung D. W. K., Petrosjan L. A., Cooperative stochastic differential games, Springer Science Business Media, 2006 | MR | Zbl