Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2015_7_3_a2, author = {Andrey V. Chernov}, title = {On existence of the {Nash} equilibrium in a differential game associated with elliptic equations: the monotone case}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {48--78}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/} }
TY - JOUR AU - Andrey V. Chernov TI - On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2015 SP - 48 EP - 78 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/ LA - ru ID - MGTA_2015_7_3_a2 ER -
%0 Journal Article %A Andrey V. Chernov %T On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2015 %P 48-78 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/ %G ru %F MGTA_2015_7_3_a2
Andrey V. Chernov. On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 48-78. http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/
[1] Boldyrev V. I., “Metod kusochno-lineinoi approksimatsii dlya resheniya zadach optimalnogo upravleniya”, Differents. uravneniya i protsessy upravleniya, 2004, no. 1, 28–123
[2] Buzinov A. A., Metody otsechenii v lineinom optimalnom bystrodeistvii, Dis. \ldots kand. fiz.-mat. nauk, YarGU, Yaroslavl, 2000
[3] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003
[4] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985
[5] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965
[6] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[7] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982
[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[9] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012
[10] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956
[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[12] Levin A. Yu., “Ob odnom algoritme minimizatsii vypuklykh funktsii”, Dokl. AN SSSR, 160:6 (1965), 1244–1247 | MR | Zbl
[13] Lobanov A. I., Matematicheskie modeli biologicheskikh sistem, opisyvaemye uravneniyami «reaktsiya-diffuziya» i «reaktsiya-diffuziya-konvektsiya», Dis. \ldots dokt. f.-m. n., MFTI, M., 2001
[14] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988
[15] Nenakhov E. I., “Ob odnom algoritme otyskaniya reshenii sistemy lineinykh neravenstv”, Teoriya optimalnikh rishen, 2005, no. 4, 42–48
[16] Pugachev V. S., Lektsii po funktsionalnomu analizu, Izd-vo MAI, M., 1996
[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979
[18] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl
[19] Chernov A. V., “Ob $\varepsilon$-ravnovesii v beskoalitsionnykh funktsionalno-operatornykh igrakh so mnogimi uchastnikami”, Trudy IMM UrO RAN, 19, no. 1, 2013, 316–328
[20] Chernov A. V., “Ob odnom podkhode k postroeniyu $\varepsilon$-ravnovesiya v beskoalitsionnykh igrakh, svyazannykh s uravneniyami matematicheskoi fiziki, upravlyaemykh mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 5:1 (2013), 104–123 | Zbl
[21] Chernov A. V., “O suschestvovanii $\varepsilon$-ravnovesiya v differentsialnykh igrakh, svyazannykh s ellipticheskimi uravneniyami, upravlyaemymi mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 6:1 (2014), 91–115 | Zbl
[22] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v zadache optimizatsii ellipticheskogo uravneniya”, Zhurnal vychisl. matem. i matem. fiz., 55:2 (2015), 213–228 | DOI | Zbl
[23] Chernov A. V., “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 21, no. 1, 2015, 264–279 | MR
[24] Chulichkov A. L., Nikolaev A. V., Lobanov A. I., Guriya G. T., “Porogovaya aktivatsiya svertyvaniya krovi i rost tromba v usloviyakh krovotoka. Teoreticheskii analiz”, Matem. modelirovanie, 12:3 (2000), 75–96
[25] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979
[26] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, American mathematical society, Providence, R.I., 2010 | MR | Zbl
[27] Zeidler E., Nonlinear Functional Analysis and its Applications, v. II, Springer, N.Y., 1990