On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 48-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues investigations concerning the problem of conditions sufficient for existence of the Nash equilibrium in noncooperative $n$-person games associated with semilinear elliptic partial differential equations of the second order. Unlike the previous author's paper having been published on this subject, now the controls may be present explicitly in integrands of the cost functionals. Moreover, the requirements to right-hand sides of equations are distinguished. Lastly, now it is used another on principle method of proving which is based (rather than on the convexity of reachable sets) on establishing convex character of dependence of the state on the control for each equation at the expense of convexity of the right-hand side with respect to the pair state–control and also of the requirements providing with the monotonicity of the nonlinear resolving operator. As an auxiliary results of a specific interest we prove theorems concerning comparison of solutions to semilinear elliptic equations and continuous character of dependence of the state on the control.
Keywords: noncooperative $n$-person game, Nash equilibrium, semilinear elliptic PDEs of the second order.
@article{MGTA_2015_7_3_a2,
     author = {Andrey V. Chernov},
     title = {On existence of the {Nash} equilibrium in a differential game associated with elliptic equations: the monotone case},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {48--78},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 48
EP  - 78
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/
LA  - ru
ID  - MGTA_2015_7_3_a2
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 48-78
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/
%G ru
%F MGTA_2015_7_3_a2
Andrey V. Chernov. On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 48-78. http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a2/

[1] Boldyrev V. I., “Metod kusochno-lineinoi approksimatsii dlya resheniya zadach optimalnogo upravleniya”, Differents. uravneniya i protsessy upravleniya, 2004, no. 1, 28–123

[2] Buzinov A. A., Metody otsechenii v lineinom optimalnom bystrodeistvii, Dis. \ldots kand. fiz.-mat. nauk, YarGU, Yaroslavl, 2000

[3] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003

[4] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985

[5] Vulikh B. Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1965

[6] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[7] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[9] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012

[10] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956

[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[12] Levin A. Yu., “Ob odnom algoritme minimizatsii vypuklykh funktsii”, Dokl. AN SSSR, 160:6 (1965), 1244–1247 | MR | Zbl

[13] Lobanov A. I., Matematicheskie modeli biologicheskikh sistem, opisyvaemye uravneniyami «reaktsiya-diffuziya» i «reaktsiya-diffuziya-konvektsiya», Dis. \ldots dokt. f.-m. n., MFTI, M., 2001

[14] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988

[15] Nenakhov E. I., “Ob odnom algoritme otyskaniya reshenii sistemy lineinykh neravenstv”, Teoriya optimalnikh rishen, 2005, no. 4, 42–48

[16] Pugachev V. S., Lektsii po funktsionalnomu analizu, Izd-vo MAI, M., 1996

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[18] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[19] Chernov A. V., “Ob $\varepsilon$-ravnovesii v beskoalitsionnykh funktsionalno-operatornykh igrakh so mnogimi uchastnikami”, Trudy IMM UrO RAN, 19, no. 1, 2013, 316–328

[20] Chernov A. V., “Ob odnom podkhode k postroeniyu $\varepsilon$-ravnovesiya v beskoalitsionnykh igrakh, svyazannykh s uravneniyami matematicheskoi fiziki, upravlyaemykh mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 5:1 (2013), 104–123 | Zbl

[21] Chernov A. V., “O suschestvovanii $\varepsilon$-ravnovesiya v differentsialnykh igrakh, svyazannykh s ellipticheskimi uravneniyami, upravlyaemymi mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 6:1 (2014), 91–115 | Zbl

[22] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v zadache optimizatsii ellipticheskogo uravneniya”, Zhurnal vychisl. matem. i matem. fiz., 55:2 (2015), 213–228 | DOI | Zbl

[23] Chernov A. V., “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 21, no. 1, 2015, 264–279 | MR

[24] Chulichkov A. L., Nikolaev A. V., Lobanov A. I., Guriya G. T., “Porogovaya aktivatsiya svertyvaniya krovi i rost tromba v usloviyakh krovotoka. Teoreticheskii analiz”, Matem. modelirovanie, 12:3 (2000), 75–96

[25] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsii i ikh prilozheniya, Naukova dumka, Kiev, 1979

[26] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, American mathematical society, Providence, R.I., 2010 | MR | Zbl

[27] Zeidler E., Nonlinear Functional Analysis and its Applications, v. II, Springer, N.Y., 1990