Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2015_7_3_a1, author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev}, title = {Mathematical foundations of the {Golden} {Rule.} {I.} {Static} variant}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {16--47}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a1/} }
TY - JOUR AU - Vladislav I. Zhukovskiy AU - Konstantin N. Kudryavtsev TI - Mathematical foundations of the Golden Rule. I. Static variant JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2015 SP - 16 EP - 47 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a1/ LA - ru ID - MGTA_2015_7_3_a1 ER -
%0 Journal Article %A Vladislav I. Zhukovskiy %A Konstantin N. Kudryavtsev %T Mathematical foundations of the Golden Rule. I. Static variant %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2015 %P 16-47 %V 7 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a1/ %G ru %F MGTA_2015_7_3_a1
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Mathematical foundations of the Golden Rule. I. Static variant. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 3, pp. 16-47. http://geodesic.mathdoc.fr/item/MGTA_2015_7_3_a1/
[1] Vaisman K. S., Ravnovesie po Berzhu, Avtoreferat diss. ... kand. fiz.-mat. nauk, SPbGU, 1995
[2] Vaisman K. S., “Ravnovesie po Berzhu”: Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova dumka, Kiev, 1994, 119–143
[3] Vasin A. A., Krasnoschekov P. S., Morozov V. V., Issledovanie operatsii, Izdatelskii tsentr «Akademiya», M., 2008
[4] Danford N., Shvarts Dzh. T., Lineinye operatory, v. I, IL, M., 1962
[5] Dmitruk A. V., Vypuklyi analiz. Elementarnyi vvodnyi kurs, Maks-Press, M., 2012
[6] Zhukovskii V. I., Kooperativnye igry pri neopredelennosti i ikh prilozheniya, Izd. 2-e, Editorial URSS, M., 2010 | MR
[7] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. I. Analog sedlovoi tochki”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44 | MR
[8] Zhukovskii V. I., Chikrii A. A., Lineino-kvadratichnye differentsialnye igry, Naukova dumka, Kiev, 1994
[9] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1985 | MR
[10] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1969
[11] Maschenko S. O., “Kontseptsiya ravnovesiya po Neshu i ee razvitie”, Zhurnal obchislovalnoi ta prikladnoi matematiki, 2012, no. 1(107), 40–65
[12] Morozov V. V., Sukharev A. G., Fedorov V. V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Vysshaya shkola, M., 1986
[13] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[14] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[15] Berge C., Théorie générale des jeux á $n$ personnes games, Gauthier Villars, Paris, 1957 ; Berzh K., Obschaya teoriya igr neskolkikh lits, Fizmatgiz, M., 1961 | MR
[16] Borel E., “Sur les systémes de formes linéaires a déterminant symétrique gauche et la théorie générale du jeu”, Comptes Rendus de l`Academie des Sciences, 184 (1927), 52–53
[17] Colman A. M., Körner T. W., Musy O., Tazdait T., “Mutual support in games: Some properties of Berge equilibria”, Journal of Mathematical Psychology, 55:2 (2011), 166–175 | DOI | MR | Zbl
[18] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174 | MR
[19] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl
[20] Nash J. F., “Non-cooperative games”, Ann. Math., 54 (1951), 286–295 | DOI | MR | Zbl
[21] Nessah R., Larbani M., Tazdait T., “A note on Berge equilibrium”, Applied Mathematics Letters, 20:8 (2007), 926–932 | DOI | MR | Zbl
[22] Von Neumann J., “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100:1 (1928), 295–320 | DOI | MR | Zbl
[23] Radjef M. S., “Sur l`existenced`un èquilibre de Berge pour un jeu diffèrentiel anp orsonnes”, Cahiers Mathèmatiques de l`Universitè d`Oran, 1998, no. 1, 89–93 | MR
[24] Shubik M., “Review of C. Berge «General theory of $n$-person games»”, Econometrica, 29:4 (1961), 821 | DOI
[25] Vaisman K. S., “About differential game under uncertainty”, Nonsmooth and Discontinuous Problems of Control and Optimization, Abstr. of Third Intern. Workshop (St.-Petersburg, 1995), 45–48
[26] Vaisman K. S., “The Berge equilibrium for linear-quadratic differential game”, Multiple criteria problems under uncertainty, The 3-d Intern. Workshop, Abstracts (Orekhovo-Zuevo, Russia, 1994), 96
[27] Vaisman K. S., Zhukovskiy V. I., “The Berge equilibrium under uncertainty”, Multiple criteria problems under uncertainty, The 3-d Intern. Workshop, Abstracts (Orekhovo-Zuevo, Russia, 1994), 97–98
[28] Zhukovskiy V. I., Molostvov V. S., Vaisman K. S., “Non-cooperative games under uncertainty”, Game Theory and Application, 3 (1997), 189–222 | MR
[29] Zhukovskiy V. I., Salukvadze M. E., Vaisman K. S., The Berge equilibrium, Preprint, Institute of control systems, Tbilisi, 1994 | MR