$\alpha$-systems of differential inclusions and their unification
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 85-116

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, $\alpha$-systems of differential inclusions are introduced on a bounded time segment $[t_0,\vartheta]$ and $\alpha$-weakly invariant sets in $[t_0,\vartheta] \times \mathbb R^n$ are defined, where $\mathbb R^n$ is a phase space of the differential inclusions. Problems are studied connected with bringing the motions (trajectories) of differential inclusions in an $\alpha$-system to a given compact set $M \subset \mathbb R^n$ at the time $\vartheta$. Questions are discussed of finding the solvability set $W \subset [t_0, \vartheta] \times \mathbb R^n$ of problem of bringing the motions of $\alpha$-system to $M$ and calculating the maximal $\alpha$-weakly invariant set $W^c \subset [t_0, \vartheta] \times \mathbb R^n$. The notion is introduced of quasi-Hamiltonian of $\alpha$-system ($\alpha$-Hamiltonian), which we see as important for studying problems of bringing motions of $\alpha$-system to $M$.
Keywords: differential inclusion, guidance problem, Hamiltonian, invariance, weak invariance.
@article{MGTA_2015_7_2_a5,
     author = {Vladimir N. Ushakov and Sergey A. Brykalov and Grigory V. Parshikov},
     title = {$\alpha$-systems of differential inclusions and their unification},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {85--116},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a5/}
}
TY  - JOUR
AU  - Vladimir N. Ushakov
AU  - Sergey A. Brykalov
AU  - Grigory V. Parshikov
TI  - $\alpha$-systems of differential inclusions and their unification
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 85
EP  - 116
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a5/
LA  - ru
ID  - MGTA_2015_7_2_a5
ER  - 
%0 Journal Article
%A Vladimir N. Ushakov
%A Sergey A. Brykalov
%A Grigory V. Parshikov
%T $\alpha$-systems of differential inclusions and their unification
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 85-116
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a5/
%G ru
%F MGTA_2015_7_2_a5
Vladimir N. Ushakov; Sergey A. Brykalov; Grigory V. Parshikov. $\alpha$-systems of differential inclusions and their unification. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 85-116. http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a5/