On the Strong Time Consistency of the Core
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 69-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Time consistency is one of desirable properties for any solution of a cooperative dynamic game. If a solution is time-consistent, the players do not need to break a cooperative agreement. In this paper, we consider the core as the solution and establish conditions for its strong time consistency. When the core is not strongly time-consistent, we show that in some cases its elements can be yielded using a strongly time-consistent imputation distribution procedure. An explicit form of the procedure is given.
Keywords: dynamic games, cooperation, strong time consistency.
Mots-clés : core
@article{MGTA_2015_7_2_a4,
     author = {Artem A. Sedakov},
     title = {On the {Strong} {Time} {Consistency} of the {Core}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {69--84},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a4/}
}
TY  - JOUR
AU  - Artem A. Sedakov
TI  - On the Strong Time Consistency of the Core
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 69
EP  - 84
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a4/
LA  - ru
ID  - MGTA_2015_7_2_a4
ER  - 
%0 Journal Article
%A Artem A. Sedakov
%T On the Strong Time Consistency of the Core
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 69-84
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a4/
%G ru
%F MGTA_2015_7_2_a4
Artem A. Sedakov. On the Strong Time Consistency of the Core. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 69-84. http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a4/

[1] Pankratova Ya. B., “Reshenie kooperativnoi differentsialnoi igry gruppovogo presledovaniya”, Diskretnyi analiz i issledovanie operatsii, 17:2 (2010), 57–78 | MR | Zbl

[2] Petrosyan L. A., “Ustoichivost reshenii differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1977, no. 19, 46–52

[3] Petrosyan L. A., “Postroenie silno-dinamicheski ustoichivykh reshenii v kooperativnykh differentsialnykh igrakh”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1992, no. 2, 33–38 | MR

[4] Petrosyan L. A., “Silno dinamicheski ustoichivye differentsialnye printsipy optimalnosti”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1993, no. 4, 35–40

[5] Petrosyan L. A., Danilov N. N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | MR

[6] Petrosyan L. A., Sedakov A. A., Bochkarev A. O., “Dvukhstupenchatye setevye igry”, Matematicheskaya teoriya igr i ee prilozheniya, 5:4 (2013), 84–104 | Zbl

[7] Pecherskii C. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evropeiskogo universiteta v Sankt-Peterburge, SPb., 2004

[8] Gao H., Petrosyan L., Sedakov A., “Strongly Time-consistent Solutions for Two-stage Network Games”, Procedia Computer Science, 31 (2014), 255–264 | DOI

[9] Germain M., Tulkens H., Magnus A., “Dynamic core-theoretic cooperation in a two-dimensional international environmental model”, Mathematical Social Sciences, 59 (2010), 208–226 | DOI | MR | Zbl

[10] Jørgensen S., “A dynamic game of waste management”, Journal of Economic Dynamics and Control, 34:2 (2010), 258–265 | DOI | MR

[11] Kranich L., Perea A., Peters H., “Core concepts for dynamic TU games”, International Game Theory Review, 7:1 (2005), 43–61 | DOI | MR | Zbl

[12] Kwon O.-H., Tarashnina S., “On a time-consistent solution of a cooperative differential time-optimal pursuit game”, Journal of the Korean Mathematical Society, 39:5 (2002), 745–764 | DOI | MR | Zbl

[13] Toriello A., Uhan N. A., “Dynamic cost allocation for economic lot sizing games”, Operations Research Letters, 42:1 (2014), 82–84 | DOI | MR