Calculation of efficiency indicators of some strategies in gambling
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the case of making decisions under risk. The player is well-informed about all the possible states of nature, as well as the corresponding probabilities (or their statistical estimates) which help the nature implement the states. There is a finite number of games for the payoff matrix made. Moreover, its elements may vary depending on the outcome of each game. The paper offers some financial betting systems (strategies) such as a fixed bet, Kelly criterion, martingale method and some of its modifications. On small game intervals (3–5 games) there are calculations of performance indicators for these strategies. They are the calculations of performance indicators by Bayesian and the ones when the variance of winning is taken into consideration. In the final part of the paper the results of numerical experiments with elements of statistical modeling are given which allow us to give recommendations on the application of these strategies.
Keywords: games with nature, payoff matrix, Bayes criterion, empirical estimation.
@article{MGTA_2015_7_2_a2,
     author = {Mikhail V. Kryuchkov and Sergey V. Rusakov},
     title = {Calculation of efficiency indicators of some strategies in gambling},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a2/}
}
TY  - JOUR
AU  - Mikhail V. Kryuchkov
AU  - Sergey V. Rusakov
TI  - Calculation of efficiency indicators of some strategies in gambling
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 33
EP  - 48
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a2/
LA  - ru
ID  - MGTA_2015_7_2_a2
ER  - 
%0 Journal Article
%A Mikhail V. Kryuchkov
%A Sergey V. Rusakov
%T Calculation of efficiency indicators of some strategies in gambling
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 33-48
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a2/
%G ru
%F MGTA_2015_7_2_a2
Mikhail V. Kryuchkov; Sergey V. Rusakov. Calculation of efficiency indicators of some strategies in gambling. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 33-48. http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a2/

[1] Aivazyan S. A., Enyukov I. S., Meshalkin L. D., Prikladnaya statistika: Osnovy modelirovaniya i pervichnaya obrabotka dannykh, Finansy i statistika, M., 1983 | MR

[2] Aivazyan S. A., Mkhitaryan V. S., Teoriya veroyatnostei i prikladnaya statistika, Yuniti-Dana, M., 2001

[3] Arkhangelskaya E. V., “Metod opredeleniya optimalnykh strategii v usloviyakh riska”, Fundamentalnye i prikladnye issledovaniya v sovremennom mire, 2014, no. 5, 83–86

[4] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MGU, M., 2005

[5] Zhukovskii V. I., Soldatova N. G., “Garantirovannye riski i iskhody v igre s prirodoi”, Problemy upravleniya, 2014, no. 1, 14–26

[6] Kremer N. Sh., Teoriya veroyatnostei i matematicheskaya statistika, Uchebnik dlya vuzov, Yuniti-Dana, M., 2002

[7] Labsker L. G., “O nekotoroi obschei skheme formirovaniya kriteriev optimalnosti v igrakh s prirodoi”, Vestnik finansovogo universiteta, 2000, no. 2, 71–78

[8] Lukashin Yu. P., Adaptivnye metody kratkosrochnogo prognozirovaniya vremennýkh ryadov, Finansy i statistika, M., 2003 | MR

[9] Martingeil. Metod martingeila i antimartingeila, pro-ts.ru: Professionalnaya shkola treidinga, (data obrascheniya: 14.03.2014) http://pro-ts.ru/teoriya/upravlenie-kapitalom-foreks/55-martingejl-metod-martingejla-i-antimartingejla

[10] Sadovin N. S., Sadovina T. N., Osnovy teorii igr, Mar. gos. un-t, Ioshkar-Ola, 2011

[11] Kelly J. L. (Jr.), “A New Interpretation of Information Rate”, Bell Systems Technical Journal, 35 (1956), 917–926 | DOI | MR