Game-theoretic model of TV show ``The Voice”
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 14-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A game-theoretic model of two-person best-choice problem with non-complete information is proposed. The players (experts) observe a sequence of random vectors $(x_i, y_i), i=1,\ldots,n$ where the value of the first component $x_i$ is known and the second value $y_i$ is hidden. In each stage player can accept the object or reject it. The choice have to made on the base of the value of the first component. A player with maximal value of the sum of the components is winner in the game. The optimal strategies are derived for the dependent and correlated components.
Keywords: best-choice game, incomplete information, threshold strategy, TV show "The Voice".
@article{MGTA_2015_7_2_a1,
     author = {Elena N. Konovalchikova and Vladimir V. Mazalov},
     title = {Game-theoretic model of {TV} show {``The} {Voice{\textquotedblright}}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {14--32},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a1/}
}
TY  - JOUR
AU  - Elena N. Konovalchikova
AU  - Vladimir V. Mazalov
TI  - Game-theoretic model of TV show ``The Voice”
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 14
EP  - 32
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a1/
LA  - ru
ID  - MGTA_2015_7_2_a1
ER  - 
%0 Journal Article
%A Elena N. Konovalchikova
%A Vladimir V. Mazalov
%T Game-theoretic model of TV show ``The Voice”
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 14-32
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a1/
%G ru
%F MGTA_2015_7_2_a1
Elena N. Konovalchikova; Vladimir V. Mazalov. Game-theoretic model of TV show ``The Voice”. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 14-32. http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a1/

[1] Dynkin E. B., “Optimalnyi vybor momenta ostanovki markovskogo protsessa”, Dokl. AN SSSR, 150:2 (1963), 238–240 | MR | Zbl

[2] Konovalchikova E. N., “Model nailuchshego vybora s nepolnoi informatsiei”, Upravlenie bolshimi sistemami, 54 (2015), 114–133 | MR

[3] Ano K., “On a partial information multiple selection problem”, Game Theory and Application, 4 (1998), 1–10 | MR

[4] Enns E., Ferenstein E., “The horse game”, J. Oper. Res. Soc. Japan, 28 (1985), 51–62 | MR | Zbl

[5] Gilbert J., Mosteller F., “Recognizing the maximum of a sequence”, J. Amer. Statist. Ass., 61 (1966), 35–73 | DOI | MR

[6] Mazalov V., “A game related to optimal stopping of two sequences of independent random variables having different distributions”, Mathematica Japonica, 43 (1996), 121–128 | MR | Zbl

[7] Neumann P., Porosinski Z., Szajowski K., “On two person full-information best choice problem with imperfect observation”, Game Theory and Application, 2 (1996), 47–55 | MR

[8] Sakaguchi M., Mazalov V., “A non-zero-sum no-information best-choice game”, Mathematical Methods of Operations Research, 60:3 (2004), 437–451 | DOI | MR | Zbl

[9] Szajowski K., “On non-zero-sum game with priority in secretary problem”, Mathematica Japonica, 37 (1992), 415–426 | MR | Zbl