Voting in the full-information best-choice problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the non-cooperative $m$-person full-information best-choice game is considered. The joint decision is made by voting. The optimal threshold strategies and payoffs of players are given depending on the voting threshold. The results of numerical modelling are presented.
Keywords: best-choice game, threshold strategy, voting.
@article{MGTA_2015_7_2_a0,
     author = {Anna A. Ivashko},
     title = {Voting in the full-information best-choice problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a0/}
}
TY  - JOUR
AU  - Anna A. Ivashko
TI  - Voting in the full-information best-choice problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 3
EP  - 13
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a0/
LA  - ru
ID  - MGTA_2015_7_2_a0
ER  - 
%0 Journal Article
%A Anna A. Ivashko
%T Voting in the full-information best-choice problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 3-13
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a0/
%G ru
%F MGTA_2015_7_2_a0
Anna A. Ivashko. Voting in the full-information best-choice problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2015_7_2_a0/