Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2015_7_1_a5, author = {Dmitry V. Khlopin}, title = {Uniform {Tauberian} theorem in differential games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {92--120}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a5/} }
Dmitry V. Khlopin. Uniform Tauberian theorem in differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 92-120. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a5/
[1] Gaitsgori V. G., “K voprosu ob ispolzovanii metoda usredneniya v zadachakh upravleniya”, Differentsialnye uravneniya, 1986, no. 11, 1876–1886
[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985
[3] Krasovskii N. N., Kotelnikova A. N., “Unifikatsiya differentsialnykh igr. Obobschennye resheniya uravnenii tipa Gamiltona–Yakobi. Stokhasticheskii povodyr”, Differentsialnye uravneniya, 45:11 (2009), 1618–1668
[4] Krasovskii N. N., Kotelnikova A. N., “Stokhasticheskii povodyr dlya ob'ekta s posledeistviem v pozitsionnoi differentsialnoi igre”, Tr. IMM UrO RAN, 17, no. 2, 2011, 97–104
[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974
[6] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981
[7] Subbotina N. N., “Singulyarnye approksimatsii minimaksnykh i vyazkostnykh reshenii uravnenii Gamiltona–Yakobi”, Tr. IMM UrO RAN, 6, no. 1, 2000, 190–208
[8] Subbotina N. N., “Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii”, Sovremennaya matematika i ee prilozheniya, 20 (2004), 3–132
[9] Khlopin D. V., “Teoremy tauberova tipa dlya konfliktno-upravlyaemykh sistem”, Tezisy dokladov Mezhdunarodnoi konferentsii «Dinamika sistem i protsessy upravleniya» (SDCP-2014), posvyaschennoi 90-letiyu so dnya rozhdeniya akademika N. N. Krasovskogo (Ekaterinburg, 15–20 sentyabrya 2014), 204–206
[10] Chentsov A. G., “Ob alternative v klasse kvazistrategii dlya differentsialnoi igry sblizheniya–ukloneniya”, Differentsialnye uravneniya, 16:10 (1980), 1801–1808
[11] Chentsov A. G., “K voprosu o sootnoshenii razlichnykh versii metoda programmnykh iteratsii: pozitsionnyi variant”, Kibernetika i sistemnyi analiz, 2002, no. 3, 130–149
[12] Alvarez O., Bardi M., “Ergodic Problems in Differential Games”, Advances in dynamic game theory, Birkhäuser, Boston, 2007, 131–152 | DOI
[13] Alvarez O., Bardi M., “Ergodicity, stabilization, and singular perturbations for Bellman–Isaacs equations”, Mem. Am. Math. Soc., 960, 2010, 1–90
[14] Arisawa M., “Ergodic problem for the Hamilton–Jacobi–Bellman equation, II”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 15:1 (1998), 1–24 | DOI
[15] Artstein Z., Bright I., “Periodic optimization suffices for infinite horizon planar optimal control”, SIAM J. Control Optim., 48:8 (2010), 4963–4986 | DOI
[16] Artstein Z., Gaitsgory V., “The value function of singularly perturbed control systems”, Appl. Math. Optim., 41:3 (2000), 425–445 | DOI
[17] Bardi M., “On differential games with long-time-average cost”, Advances in dynamic games and their applications, Birkhäuser, Boston, 2009, 3–18
[18] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhauser, Boston, 1997
[19] Blackwell D., “Discrete Dynamic programming”, Ann. Math. Statist., 33:2 (1962), 719–726 | DOI
[20] Buckdahn R., Cardaliaguet P., Quincampoix M., “Some Recent Aspects of Differential Game Theory”, Dyn. Games Appl., 1:1 (2011), 74–114 | DOI
[21] Buckdahn R., Goreac D., Quincampoix M., “Existence of Asymptotic Values for Nonexpansive Stochastic Control Systems”, Applied Mathematics Optimization, 70:1 (2014), 1–28 | DOI
[22] Cardaliaguet P., “Ergodicity of Hamilton–Jacobi equations with a non coercive non convex Hamiltonian in $\mathbb{R}^2/\mathbb{Z}^2$”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27:3 (1998), 837–856 | DOI
[23] Carlson D. A., Haurie A. B., Leizarowitz A., Optimal Control on Infinite Time Horizon, Springer, Berlin, 1991
[24] Chentsov A. G., Morina S. I., Extensions and relaxations, Mathematics and its Applications, 542, Kluwer, Dordrecht, 2002
[25] Elliot R. J., Kalton N., The Existence of Value for Differential Games, Memoir of the American Mathematical Society, 126, American Mathematical Soc., 1972
[26] Evans L., Souganidis P. E., “Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations”, Indiana Univ. Math. J., 33 (1984), 773–797 | DOI
[27] Gaitsgory V., Quincampoix M., “On sets of occupational measures generated by a deterministic control system on an infinite time horizon”, Nonlinear Analysis: Theory, Methods Applications, 88 (2011), 27–41 | DOI
[28] Hardy G. H., Divergent series, Oxford University Press, Oxford, 1949
[29] Hardy G. H., Littlewood J. E., “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc., 13 (1914), 174–191 | DOI
[30] Khlopin D. V., “A uniform Tauberian theorem for abstract game”, Abstracts of the Fourth International School-Seminar “Nonlinear analysis and extremal problems” (June 22–28, 2014), 59
[31] Krasovskii N. N., Chentsov A. G., “On the design of differential games, I”, Probl. Control and Inform. Theory, 6:5–6 (1977), 381–395
[32] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988
[33] Lions P.-L., Papanicolaou G., Varadhan S. R. S., Homogenization of Hamilton–Jacobi Equations, unpublished work
[34] Mertens J. F., Neyman A., “Stochastic Games”, International Journal of Game Theory, 10:2 (1981), 53–66 | DOI
[35] Oliu-Barton M., Vigeral G., “A uniform Tauberian theorem in optimal control”, Advances in Dynamic Games, Annals of the International Society of Dynamic Games, eds. P. Cardaliaguet, R. Cressman, Birkhäuser, Boston, 2013, 199–215 | DOI
[36] Quincampoix M., Renault J., “On the existence of a limit value in some non expansive optimal control problems”, SIAM J. Control Optim., 49:5 (2011), 2118–2132 | DOI
[37] Roxin E., “Axiomatic approach in differential games”, Journal Optimization Theory and Application, 3:3 (1969), 153–163 | DOI
[38] Ryll-Nardzewski C., “A theory of pursuit and evasion”, Advances in Game Theory, eds. M. Dresher, R. J. Aumann, Princeton University Press, 1964, 113–126
[39] Subbotin A. I., Generalized solutions of first order PDEs, Birkhauser, Boston, 1995
[40] Varaiya P. P., “On the existence of solutions to a differential game”, SIAM J. Control, 5:1 (1967), 153–162 | DOI
[41] Vigeral G., “A zero-sum stochastic game with compact action sets and no asymptotic value”, Dynamic Games and Applications, 3:2 (2013), 172–186 | DOI