Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2015_7_1_a4, author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev}, title = {Pareto-equilibrium strategy profile}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {74--91}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/} }
TY - JOUR AU - Vladislav I. Zhukovskiy AU - Konstantin N. Kudryavtsev TI - Pareto-equilibrium strategy profile JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2015 SP - 74 EP - 91 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/ LA - ru ID - MGTA_2015_7_1_a4 ER -
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Pareto-equilibrium strategy profile. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 74-91. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/
[1] Vasilev F. P., Antipin A. S., Artemeva L. A., “Regulyarizovannyi nepreryvnyi ekstragradientnyi metod resheniya parametricheskoi mnogokriterialnoi zadachi ravnovesnogo programmirovaniya”, Doklady Akademii Nauk, 434:4 (2010), 434–442
[2] Vasilev F. P., Antipin A. S., “Metody regulyarizatsii dlya resheniya neustoichivykh zadach ravnovesnogo programmirovaniya so svyazannymi ogranicheniyami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 45:1 (2005), 27–40
[3] Vorobev N. N., “Sovremennoe sostoyanie teorii igr”, Uspekhi matematicheskikh nauk, 25:2 (1970), 81–140
[4] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971
[5] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972
[6] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. I: Analog sedlovoi tochki”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44
[7] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. II: Analog maksimina”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 3–45
[8] Kleimenov A. F., Kuvshinov D. R., Osipov S. I., “Chislennoe postroenie reshenii Nesha i Shtakelberga v lineinoi neantagonisticheskoi pozitsionnoi differentsialnoi igre dvukh lits”, Tr. IMM UrO RAN, 15, no. 4, 2009, 120–133
[9] Kononenko A. F., Konurbaev E. M., “Suschestvovanie ravnovesnykh situatsii v klasse pozitsionnykh strategii, optimalnykh po Pareto dlya nekotorykh differentsialnykh igr”, Teoriya igr i ee prilozheniya, Kemerovo, 1983, 105–115
[10] Mamedov M. B., “Issledovanie neuluchshaemykh situatsii ravnovesiya v nelineinykh konfliktno-upravlyaemykh dinamicheskikh sistemakh”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 308–317
[11] Mamedov M. B., “O ravnovesnosti po Neshu situatsii, optimalnoi po Pareto”, Izvestiya AN Azerb. SSR, Ser. fiz-tekhn. i matem. nauk, 4:2 (1983), 11–17
[12] Morozov V. V., Sukharev A. G., Fedorov V. V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Nauka, M., 1986
[13] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[14] Borel E., “La théorie du jeu et les equations inténgrales a noyau symétrique”, Comptes Rendus de l'Académie des Sciences, 173 (1921), 1304–1308
[15] Gasko N., Suciu M., Lung R. I., Dumitrescu D., “Pareto-optimal Nash equilibrium detection using an evolutionary approach”, Acta Univ. Sapientiae, Informatica, 4:2 (2012), 237–246
[16] Gatti N., Rocco M., Sandhom T., “On the verification and computation of strong Nash equilibrium”, Proceedings of the ACM International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (Saint Paul, USA, May 6–10, 2013), 723–730
[17] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174
[18] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36 (1950), 48–49 | DOI
[19] Starr A. W., Ho Y. C., “Further properties of nonzero-sum differential games”, J. Optimiz. Theory and Appl., 3:4 (1969), 207–219 | DOI
[20] Von Neumann J., “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100:1 (1928), 295–320 | DOI