Pareto-equilibrium strategy profile
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 74-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the strategy profiles that are the Pareto-optimal the Nash equilibriums are considered. Sufficient conditions for existence of the equilibrium for the pure strategies are found. These conditions use the Germier convolutions of the utility functions. For non-cooperative games with compact strategy sets and with continuous utility functions existence of the Pareto-optimal Nash equilibriums in mixed strategies is proved.
Keywords: non-cooperative game, mixed strategies, Nash equilibrium, Pareto optimums.
@article{MGTA_2015_7_1_a4,
     author = {Vladislav I. Zhukovskiy and Konstantin N. Kudryavtsev},
     title = {Pareto-equilibrium strategy profile},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {74--91},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/}
}
TY  - JOUR
AU  - Vladislav I. Zhukovskiy
AU  - Konstantin N. Kudryavtsev
TI  - Pareto-equilibrium strategy profile
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 74
EP  - 91
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/
LA  - ru
ID  - MGTA_2015_7_1_a4
ER  - 
%0 Journal Article
%A Vladislav I. Zhukovskiy
%A Konstantin N. Kudryavtsev
%T Pareto-equilibrium strategy profile
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 74-91
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/
%G ru
%F MGTA_2015_7_1_a4
Vladislav I. Zhukovskiy; Konstantin N. Kudryavtsev. Pareto-equilibrium strategy profile. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 74-91. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a4/

[1] Vasilev F. P., Antipin A. S., Artemeva L. A., “Regulyarizovannyi nepreryvnyi ekstragradientnyi metod resheniya parametricheskoi mnogokriterialnoi zadachi ravnovesnogo programmirovaniya”, Doklady Akademii Nauk, 434:4 (2010), 434–442

[2] Vasilev F. P., Antipin A. S., “Metody regulyarizatsii dlya resheniya neustoichivykh zadach ravnovesnogo programmirovaniya so svyazannymi ogranicheniyami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 45:1 (2005), 27–40

[3] Vorobev N. N., “Sovremennoe sostoyanie teorii igr”, Uspekhi matematicheskikh nauk, 25:2 (1970), 81–140

[4] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971

[5] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972

[6] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. I: Analog sedlovoi tochki”, Matematicheskaya teoriya igr i ee prilozheniya, 5:1 (2013), 27–44

[7] Zhukovskii V. I., Kudryavtsev K. N., “Uravnoveshivanie konfliktov pri neopredelennosti. II: Analog maksimina”, Matematicheskaya teoriya igr i ee prilozheniya, 5:2 (2013), 3–45

[8] Kleimenov A. F., Kuvshinov D. R., Osipov S. I., “Chislennoe postroenie reshenii Nesha i Shtakelberga v lineinoi neantagonisticheskoi pozitsionnoi differentsialnoi igre dvukh lits”, Tr. IMM UrO RAN, 15, no. 4, 2009, 120–133

[9] Kononenko A. F., Konurbaev E. M., “Suschestvovanie ravnovesnykh situatsii v klasse pozitsionnykh strategii, optimalnykh po Pareto dlya nekotorykh differentsialnykh igr”, Teoriya igr i ee prilozheniya, Kemerovo, 1983, 105–115

[10] Mamedov M. B., “Issledovanie neuluchshaemykh situatsii ravnovesiya v nelineinykh konfliktno-upravlyaemykh dinamicheskikh sistemakh”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 308–317

[11] Mamedov M. B., “O ravnovesnosti po Neshu situatsii, optimalnoi po Pareto”, Izvestiya AN Azerb. SSR, Ser. fiz-tekhn. i matem. nauk, 4:2 (1983), 11–17

[12] Morozov V. V., Sukharev A. G., Fedorov V. V., Issledovanie operatsii v zadachakh i uprazhneniyakh, Nauka, M., 1986

[13] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[14] Borel E., “La théorie du jeu et les equations inténgrales a noyau symétrique”, Comptes Rendus de l'Académie des Sciences, 173 (1921), 1304–1308

[15] Gasko N., Suciu M., Lung R. I., Dumitrescu D., “Pareto-optimal Nash equilibrium detection using an evolutionary approach”, Acta Univ. Sapientiae, Informatica, 4:2 (2012), 237–246

[16] Gatti N., Rocco M., Sandhom T., “On the verification and computation of strong Nash equilibrium”, Proceedings of the ACM International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS) (Saint Paul, USA, May 6–10, 2013), 723–730

[17] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3:1 (1952), 170–174

[18] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Academ. Sci. USA, 36 (1950), 48–49 | DOI

[19] Starr A. W., Ho Y. C., “Further properties of nonzero-sum differential games”, J. Optimiz. Theory and Appl., 3:4 (1969), 207–219 | DOI

[20] Von Neumann J., “Zur Theorie der Gesellschaftspiele”, Math. Ann., 100:1 (1928), 295–320 | DOI