Network model of inventory control in case of the price competition
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 32-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of processes of cyclic transportation in logistic systems for a case of the price competition is investigated. We consider a network of a set stations, in each of which there are several enterprises with their warehouses. Enterprises supply and sell not exactly interchangeable products, the demand for which is deterministic. It is case of so called differential goods and customers can buy them at all prices. Each enterprise uses a relaxation method of inventory control with a deficiency assumption when modeling control systems. Existence conditions of the equilibrium decision for the model are given.
Keywords: logistic system, price competition, internal strategy, external strategy, Nash equilibrium in pure strategy, inventory control.
@article{MGTA_2015_7_1_a2,
     author = {Natalia A. Gasratova and Mansur G. Gasratov},
     title = {Network model of inventory control in case of the price competition},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a2/}
}
TY  - JOUR
AU  - Natalia A. Gasratova
AU  - Mansur G. Gasratov
TI  - Network model of inventory control in case of the price competition
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2015
SP  - 32
EP  - 49
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a2/
LA  - ru
ID  - MGTA_2015_7_1_a2
ER  - 
%0 Journal Article
%A Natalia A. Gasratova
%A Mansur G. Gasratov
%T Network model of inventory control in case of the price competition
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2015
%P 32-49
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a2/
%G ru
%F MGTA_2015_7_1_a2
Natalia A. Gasratova; Mansur G. Gasratov. Network model of inventory control in case of the price competition. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 7 (2015) no. 1, pp. 32-49. http://geodesic.mathdoc.fr/item/MGTA_2015_7_1_a2/

[1] Gasratov M. G., Zakharov V. V., “Teoretiko-igrovye modeli optimizatsii tsepochki postavok dlya determinirovannogo sprosa”, Matematicheskaya teoriya igr i ee prilozheniya, 3:1 (2011), 23–59

[2] Gasratova N. A., Gasratov M. G., “Setevaya model upravleniya zapasami dlya sluchaya kolichestvennoi konkurentsii”, Sibirskii zhurnal industrialnoi matematiki (to appear)

[3] Grigorev M. N., Dolgov A. P., Uvarov S. A., Upravlenie zapasami v logistike: metody, modeli, informatsionnye tekhnologii, Uchebnoe posobie, Izd. dom «Biznes-pressa», SPb., 2006

[4] Koryagin M. E., Issledovanie i optimizatsiya matematicheskikh modelei protsessov tsiklicheskoi perevozki v logisticheskikh sistemakh, Avtoref. dis. na soisk. uchen. stepeni kand. tekhn. nauk (05.13.18), Kemerovo, 2003

[5] Kukushkin N. S., Morozov V. V., Teoriya neantagonisticheskikh igr, MGU, M., 1984

[6] Lokshin E. Yu., Ekonomika materialno-tekhnicheskogo snabzheniya, Ucheb. posobie, Gosplanizdat, M., 1963

[7] Tirol Zh., Rynki i rynochnaya vlast: teoriya organizatsii i promyshlennosti, Per. s angl. Yu. M. Dontsa, M. D. Fakirovoi, eds. A. S. Galperin, N. A. Zenkevich, Ins-t Ekonomicheskaya shkola, SPb., 2000

[8] Fasolyak N. D., Upravlenie proizvodstvennymi zapasami (ekonomicheskii aspekt problemy), Ekonomika, M., 1972

[9] Khedli Dzh., Nelineinoe i dinamicheskoe programmirovanie, Per. s angl., ed. G. P. Akilov, Mir, M., 1967

[10] Khrutskii E. A., Sakovich V. A., Kolosov S. P., Optimizatsiya khozyaistvennykh svyazei i materialnykh zapasov: voprosy i metodologii, Ekonomika, M., 1977

[11] Dai Y., Chao X., Fang S. C., Henry L. W. N., “Game Theoretic Analysis of a Distribution System with Customer Market Search”, Annals of Operations Research, 135 (2005), 223–238 | DOI

[12] Egri P., Vancza J., “A distributed coordination mechanism for supply networks with asymmetric information”, European Journal of Operational Research, 226 (2013), 452–460 | DOI

[13] Fang X., “Capacity Games for Partially Complementary Products Under Multivariate Random Demands”, Naval Research Logistics, 2010, 146–159 | DOI

[14] Guan R., Zhao X., “Pricing and inventory management in a system with multiple competing retailers under $(r, Q)$ policies”, Computers and Operations Research, 38 (2011), 1294–1304 | DOI

[15] Klijn F., Slikker M., “Distribution center consolidation games”, Operations Research Letters, 33 (2005), 285–288 | DOI

[16] Liu Z., “Equilibrium Analysis of Capacity Allocation with Demand Competition”, Naval Research Logistics, 2012, 254–265 | DOI

[17] Lozano S., Moreno P., Adenso-Diaz B., Algaba E., “Cooperative game theory approach to allocating benefits of horizontal cooperation”, European Journal of Operational Research, 229 (2013), 444–452 | DOI

[18] Nagurney A., “Formulation and analysis of horizontal mergers among oligopolistic firms”, Comput. Manag. Sci., 7 (2010), 377–406 | DOI

[19] Yu Y., Huang G. Q., “Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family”, European Journal of Operational Research, 206 (2010), 361–373 | DOI