Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2014_6_4_a2, author = {Artem I. Pyanykh}, title = {On a modification of a multistage bidding model with an insider}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {68--84}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/} }
Artem I. Pyanykh. On a modification of a multistage bidding model with an insider. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 4, pp. 68-84. http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/
[1] Gelfond A. O., Ischislenie konechnykh raznostei, Knizhnyi dom «LIBROKOM», M., 2012
[2] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120
[3] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[4] Sandomirskaya M. S., Domanskii V. K., “Reshenie odnoshagovoi igry birzhevykh torgov s nepolnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 32–54 | MR | Zbl
[5] Aumann R. J., Maschler M. B., Repeated Games with Incomplete Information, The MIT Press, Cambridge–London | MR
[6] Chatterjee K., Samuelson W., “Bargaining under Incomplete Information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl
[7] De Meyer B., Saley H., “On the strategic origin of Brownian motion in finance”, Int. J. Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl
[8] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, Int. J. Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl
[9] Myerson R. B., Satterthwaite M. A., “Efficient Mechanisms for Bilateral Trading”, Journal of Economic Theory, 29 (1983), 265–281 | DOI | MR | Zbl