On a modification of a multistage bidding model with an insider
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 4, pp. 68-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with a modification of a discrete multistage bidding model introduced in [8]. Bidding takes place between two players for one unit of a risky asset. The price of the asset is determined randomly at the start of the bidding and can be either $ m $ with a probability of $ p $ or $ 0 $ with a probability of $ (1 - p) $. The real price of the asset is known to Player 1. Player 2 knows only the probability of a high price and that Player 1 is insider. At each stage of the bidding players make integral bids. The higher bid wins and one unit of the asset is transacted to the winning player. The price of the transaction equals to a convex combination of bids with a coefficient of $ 1/2 $. This model is reduced to the repeated game with incomplete information. The solution for the infinite game with arbitrary $ m $ an $ p $ is found, including optimal strategies for both players and the value of the game.
Keywords: multistage bidding, repeated games with incomplete information, asymmetric information.
@article{MGTA_2014_6_4_a2,
     author = {Artem I. Pyanykh},
     title = {On a modification of a multistage bidding model with an insider},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {68--84},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/}
}
TY  - JOUR
AU  - Artem I. Pyanykh
TI  - On a modification of a multistage bidding model with an insider
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 68
EP  - 84
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/
LA  - ru
ID  - MGTA_2014_6_4_a2
ER  - 
%0 Journal Article
%A Artem I. Pyanykh
%T On a modification of a multistage bidding model with an insider
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 68-84
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/
%G ru
%F MGTA_2014_6_4_a2
Artem I. Pyanykh. On a modification of a multistage bidding model with an insider. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 4, pp. 68-84. http://geodesic.mathdoc.fr/item/MGTA_2014_6_4_a2/

[1] Gelfond A. O., Ischislenie konechnykh raznostei, Knizhnyi dom «LIBROKOM», M., 2012

[2] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120

[3] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[4] Sandomirskaya M. S., Domanskii V. K., “Reshenie odnoshagovoi igry birzhevykh torgov s nepolnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 4:1 (2012), 32–54 | MR | Zbl

[5] Aumann R. J., Maschler M. B., Repeated Games with Incomplete Information, The MIT Press, Cambridge–London | MR

[6] Chatterjee K., Samuelson W., “Bargaining under Incomplete Information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl

[7] De Meyer B., Saley H., “On the strategic origin of Brownian motion in finance”, Int. J. Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl

[8] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, Int. J. Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl

[9] Myerson R. B., Satterthwaite M. A., “Efficient Mechanisms for Bilateral Trading”, Journal of Economic Theory, 29 (1983), 265–281 | DOI | MR | Zbl