The bounded core for games with restricted cooperation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 100-121

Voir la notice de l'article provenant de la source Math-Net.Ru

A game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$ is a non-empty collection of feasible coalitions such that $N\in\Omega$, and $v\colon\Omega\to\mathbb R$ is a characteristic function. Unlike the classical TU games the cores for games with restricted cooperation may be unbounded. Recently Grabisch and Sudhölter [9] proposed a new concept – the bounded core – that for assigns to a game $(N,v,\Omega)$ the union of all bounded faces of the core. The bounded core can be empty even the core is not empty. An axiomatization of the bounded core for the class $\mathcal G^r$ with restricted cooperation is given with the help of axioms efficiency, boundedness, bilateral consistency, a weakening of converse consistency, and ordinality. The last axiom states that the property of a payoff vector to belong to a solution only depends on the signs of the corresponding components of the excess vectors, but not on their values. Another axiomatization of the core is given for the subclass $\mathcal G^r_{bc}\subset\mathcal G^r$ of games with non-empty bounded cores. The characterizing axioms are non-emptiness, covariance, boundedness, bilateral consistency, and superadditivity.
Keywords: cooperative game, bounded core, axiomatic characterization.
Mots-clés : solution, core
@article{MGTA_2014_6_2_a5,
     author = {Elena B. Yanovskaya},
     title = {The bounded core for games with restricted cooperation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {100--121},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/}
}
TY  - JOUR
AU  - Elena B. Yanovskaya
TI  - The bounded core for games with restricted cooperation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 100
EP  - 121
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/
LA  - ru
ID  - MGTA_2014_6_2_a5
ER  - 
%0 Journal Article
%A Elena B. Yanovskaya
%T The bounded core for games with restricted cooperation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 100-121
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/
%G ru
%F MGTA_2014_6_2_a5
Elena B. Yanovskaya. The bounded core for games with restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 100-121. http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/