Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2014_6_2_a5, author = {Elena B. Yanovskaya}, title = {The bounded core for games with restricted cooperation}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {100--121}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/} }
Elena B. Yanovskaya. The bounded core for games with restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 100-121. http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/
[1] Charnes A., Kortanek K., “On balanced sets, cores and linear programming”, Cah. Centre étude. rech. oper., 9:1 (1967), 32–43 | MR | Zbl
[2] Charnes A., Golany B., Keane M., Rousseau J., “Extremal principle solutions of games in characteristic function form: core, Chebychev and Shapley value generalizations”, Econometrics of Planning and Efficiency, eds. J. K. Sengupta, G. K. Kadekodi, Kluwer Academic Publisher, 1988, 123–133 | DOI | MR
[3] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (1965), 223–259 | DOI | MR | Zbl
[4] Derks J., Reijnierse H., “On the core of a collection of coalitions”, International Journal of Game Theory, 27 (1998), 451–459 | DOI | MR | Zbl
[5] Faigle U., “Core of games with restricted cooperation”, Zeitschrift für Operation Research, 33 (1989), 405–422 | MR | Zbl
[6] Hwang Y.-A., Sudhölter P., “Axiomatizations of the core on the univeesal domain and other natural domains”, International Journal of Game Theory, 29 (2000), 597–624 | DOI | MR
[7] Hokari T., “Consistency implies equal treatment in TU-games”, Games and Economic Behavior, 51 (2005), 63–82 | DOI | MR | Zbl
[8] Gillies R. P., The Cooperative Game Theory of Networks and Hierarchies, Theory and Decision Library, 44, Springer-Verlag, 2010 | DOI | MR
[9] Grabisch M., “Ensuring the boundedness of the core of games with restricted cooperation”, Annals of Operations Research, 191 (2011), 137–154 | DOI | MR | Zbl
[10] Grabisch M., Sudhölter P., The bounded core for games with precedence constraints, Documents de travail du Centre d'Economie de la Sorbonne 12006, Universit Panthon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, 2012
[11] Kamijo Y., “A two-step value for cooperative games with coalitional structures”, International Game Theory Review, 11 (2009), 207–214 | DOI | MR | Zbl
[12] Katsev I. V., Yanovskaya E., “The prenucleolus for games with restricted cooperation”, Mathematical Social Sciences, 66 (2013), 56–65 | DOI | MR | Zbl
[13] Llerena F., “An axiomatization of the core of games with a restricted cooperation”, Economic Letters, 95 (2007), 80–84 | DOI | MR | Zbl
[14] Owen G., “Values of games with a priori unions”, Lect. Notes Econ. and Math. Syst., 141, 1977, 76–88 | DOI | MR | Zbl
[15] Peleg B., “On the reduced game property and its converse”, International Journal of Game Theory, 15 (1986), 187–200 ; “A correction”, International Journal of Game Theory, 16 (1987), 290 | DOI | MR | Zbl | MR
[16] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston, 2003 | MR
[17] Yanovskaya E., “Set-valued analogues of the prenucleolus”, International Journal of Mathematics, Game Theory and Algebra, 7:4 (1998), 235–247 | MR | Zbl