The bounded core for games with restricted cooperation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 100-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

A game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$ is a non-empty collection of feasible coalitions such that $N\in\Omega$, and $v\colon\Omega\to\mathbb R$ is a characteristic function. Unlike the classical TU games the cores for games with restricted cooperation may be unbounded. Recently Grabisch and Sudhölter [9] proposed a new concept – the bounded core – that for assigns to a game $(N,v,\Omega)$ the union of all bounded faces of the core. The bounded core can be empty even the core is not empty. An axiomatization of the bounded core for the class $\mathcal G^r$ with restricted cooperation is given with the help of axioms efficiency, boundedness, bilateral consistency, a weakening of converse consistency, and ordinality. The last axiom states that the property of a payoff vector to belong to a solution only depends on the signs of the corresponding components of the excess vectors, but not on their values. Another axiomatization of the core is given for the subclass $\mathcal G^r_{bc}\subset\mathcal G^r$ of games with non-empty bounded cores. The characterizing axioms are non-emptiness, covariance, boundedness, bilateral consistency, and superadditivity.
Keywords: cooperative game, bounded core, axiomatic characterization.
Mots-clés : solution, core
@article{MGTA_2014_6_2_a5,
     author = {Elena B. Yanovskaya},
     title = {The bounded core for games with restricted cooperation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {100--121},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/}
}
TY  - JOUR
AU  - Elena B. Yanovskaya
TI  - The bounded core for games with restricted cooperation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 100
EP  - 121
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/
LA  - ru
ID  - MGTA_2014_6_2_a5
ER  - 
%0 Journal Article
%A Elena B. Yanovskaya
%T The bounded core for games with restricted cooperation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 100-121
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/
%G ru
%F MGTA_2014_6_2_a5
Elena B. Yanovskaya. The bounded core for games with restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 100-121. http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a5/

[1] Charnes A., Kortanek K., “On balanced sets, cores and linear programming”, Cah. Centre étude. rech. oper., 9:1 (1967), 32–43 | MR | Zbl

[2] Charnes A., Golany B., Keane M., Rousseau J., “Extremal principle solutions of games in characteristic function form: core, Chebychev and Shapley value generalizations”, Econometrics of Planning and Efficiency, eds. J. K. Sengupta, G. K. Kadekodi, Kluwer Academic Publisher, 1988, 123–133 | DOI | MR

[3] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (1965), 223–259 | DOI | MR | Zbl

[4] Derks J., Reijnierse H., “On the core of a collection of coalitions”, International Journal of Game Theory, 27 (1998), 451–459 | DOI | MR | Zbl

[5] Faigle U., “Core of games with restricted cooperation”, Zeitschrift für Operation Research, 33 (1989), 405–422 | MR | Zbl

[6] Hwang Y.-A., Sudhölter P., “Axiomatizations of the core on the univeesal domain and other natural domains”, International Journal of Game Theory, 29 (2000), 597–624 | DOI | MR

[7] Hokari T., “Consistency implies equal treatment in TU-games”, Games and Economic Behavior, 51 (2005), 63–82 | DOI | MR | Zbl

[8] Gillies R. P., The Cooperative Game Theory of Networks and Hierarchies, Theory and Decision Library, 44, Springer-Verlag, 2010 | DOI | MR

[9] Grabisch M., “Ensuring the boundedness of the core of games with restricted cooperation”, Annals of Operations Research, 191 (2011), 137–154 | DOI | MR | Zbl

[10] Grabisch M., Sudhölter P., The bounded core for games with precedence constraints, Documents de travail du Centre d'Economie de la Sorbonne 12006, Universit Panthon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, 2012

[11] Kamijo Y., “A two-step value for cooperative games with coalitional structures”, International Game Theory Review, 11 (2009), 207–214 | DOI | MR | Zbl

[12] Katsev I. V., Yanovskaya E., “The prenucleolus for games with restricted cooperation”, Mathematical Social Sciences, 66 (2013), 56–65 | DOI | MR | Zbl

[13] Llerena F., “An axiomatization of the core of games with a restricted cooperation”, Economic Letters, 95 (2007), 80–84 | DOI | MR | Zbl

[14] Owen G., “Values of games with a priori unions”, Lect. Notes Econ. and Math. Syst., 141, 1977, 76–88 | DOI | MR | Zbl

[15] Peleg B., “On the reduced game property and its converse”, International Journal of Game Theory, 15 (1986), 187–200 ; “A correction”, International Journal of Game Theory, 16 (1987), 290 | DOI | MR | Zbl | MR

[16] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Kluwer Academic Publishers, Boston, 2003 | MR

[17] Yanovskaya E., “Set-valued analogues of the prenucleolus”, International Journal of Mathematics, Game Theory and Algebra, 7:4 (1998), 235–247 | MR | Zbl