Equilibrium in secure strategies in the Bertrand--Edgeworth duopoly
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 42-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze the Bertrand–Edgeworth duopoly model using a solution concept of Equilibrium in Secure Strategies (EinSS), which provides a model of cautious behavior in non-cooperative games. It is suitable for studying games, in which threats of other players are an important factor in the decision-making. We show that in some cases when Nash–Cournot equilibrium does not exist in the price duopoly of Bertrand–Edgeworth there is a unique EinSS, in which both players choose the same equilibrium price lower than the monopoly price. The difference between these prices can be interpreted as an additional reduction in price, which allows players to secure themselves against mutual threats of undercutting. We formulate and prove a criterion for the EinSS existence.
Keywords: Bertrand–Edgeworth duopoly, equilibrium in secure strategies, capacity constraints, cautious behavior.
@article{MGTA_2014_6_2_a2,
     author = {Alexey B. Iskakov and Mikhail B. Iskakov},
     title = {Equilibrium in secure strategies in the {Bertrand--Edgeworth} duopoly},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {42--59},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a2/}
}
TY  - JOUR
AU  - Alexey B. Iskakov
AU  - Mikhail B. Iskakov
TI  - Equilibrium in secure strategies in the Bertrand--Edgeworth duopoly
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 42
EP  - 59
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a2/
LA  - ru
ID  - MGTA_2014_6_2_a2
ER  - 
%0 Journal Article
%A Alexey B. Iskakov
%A Mikhail B. Iskakov
%T Equilibrium in secure strategies in the Bertrand--Edgeworth duopoly
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 42-59
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a2/
%G ru
%F MGTA_2014_6_2_a2
Alexey B. Iskakov; Mikhail B. Iskakov. Equilibrium in secure strategies in the Bertrand--Edgeworth duopoly. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 2, pp. 42-59. http://geodesic.mathdoc.fr/item/MGTA_2014_6_2_a2/

[1] Aleskerov F. T., “Teoretiko-igrovoe modelirovanie: popytka kratkogo obsuzhdeniya i prognoza razvitiya”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 17:1 (2013), 181–184

[2] Iskakov M. B., Iskakov A. B., “Polnoe reshenie zadachi Khotellinga: kontseptsiya ravnovesiya v bezopasnykh strategiyakh dlya igry opredeleniya tsen”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 13:1 (2012), 10–33

[3] Novikov D. A., Stimulirovanie v organizatsionnykh sistemakh, SINTEG, Moskva, 2003

[4] Novikov D. A., Chkhartishvili A. G., Refleksivnye igry, SINTEG, Moskva, 2003

[5] Allen B., Hellwig M., “Bertrand-Edgeworth oligopoly in large markets”, Review of Economic Studies, 53 (1986), 175–204 | DOI | MR | Zbl

[6] Allen B., Hellwig M., “Price-Setting Firms and the Oligopolistic Foundations of Perfect Competition”, The American Economic Review, 76:2 (1986), 387–392

[7] d'Aspremont C., Gabszewicz J., Thisse J.-F., “On Hotelling's 'Stability in Competition' ”, Econometrica, 47:5 (1979), 1145–1150 | DOI | MR | Zbl

[8] d'Aspremont C., Gabszewicz J., “Quasi-Monopolies”, Economica, 52:206 (1985), 141–151 | DOI

[9] Beckmann M. J., “Edgeworth–Bertrand duopoly revisited”, Operations Research – Verfahren, v. III, eds. Rudolf Henn et al., Verlag Anton Hain, Meisenheim, 1965, 55–68

[10] Benassy J.-P., “Market Size and Substitutability in Imperfect Competition: A Bertrand–Edgeworth–Chamberlin Model?”, Review of Economic Studies, 56:2 (1989), 217–234 | DOI | MR | Zbl

[11] Bertrand J., “Review of Cournot's 'Rechercher sur la theoric mathematique de la richesse' ”, Journal des Savants, 67 (1883), 499–508

[12] Dastidar K. G., “On the existence of pure strategy Bertrand equilibrium”, Economic Theory, 5 (1995), 19–32 | DOI | MR | Zbl

[13] Dasgupta P., Maskin E., “The existence of equilibrium in discontinuous economic games, II: Applications”, Review Economic Studies, 53 (1986), 27–41 | DOI | MR | Zbl

[14] Dixon H. D., “The existence of mixed-strategy equilibria in a price-setting oligopoly with convex costs”, Economics Letters, 16 (1984), 205–212 | DOI | MR | Zbl

[15] Dixon H. D., “Integer Pricing and Bertrand–Edgeworth Oligopoly with Strictly Convex Costs: Is It Worth More Than a Penny?”, Bulletin of Economic Research, 45:3 (1993), 257–268 | DOI

[16] Edgeworth F. M., Papers Relating to Political Economy, v. I, Macmillan, London, 1925 | Zbl

[17] Hotelling H., “Stability in Competition”, The Economic Journal, 39:153 (1929), 41–57 | DOI

[18] Iskakov M. B., “Equilibrium in Safe Strategies”, Automation and Remote Control, 66:3 (2005), 465–478 | DOI | MR | Zbl

[19] Iskakov M. B., “Equilibrium in Safety Strategies and equilibriums in objections and counter objections in noncooperative games”, Automation and Remote Control, 69:2 (2008), 278–298 | DOI | MR | Zbl

[20] Iskakov M., Iskakov A., “Solution of the Hotelling's game in secure strategies”, Economics Letters, 117 (2012), 115–118 | DOI | MR | Zbl

[21] Iskakov M., Iskakov A., Equilibrium in secure strategies, CORE Discussion Paper 2012/61, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2012

[22] Iskakov M., Iskakov A., Zakharov A., CORE Discussion Paper 2014/10, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), Equilibria in secure strategies in the Tullock contest

[23] Shubik M., “A comparison of treatments of a duopoly problem (part II)”, Econometrica, 23 (1955), 417–431 | DOI | Zbl

[24] Tullock G., “The welfare costs of tariffs, monopoly and theft”, Western Economic Journal, 5 (1967), 224–232

[25] Tullock G., “Efficient rent seeking”, Toward a theory of the rent-seeking society, eds. Buchanan J. M., Tollison R. D., Tullock G., A University Press, College Station, TX, 1980, 97–112