On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 91-115

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to obtaining the sufficient conditions for existence of the Nash $\varepsilon$-equilibrium in noncooperative $n$-person games associated with semilinear elliptic partial differential equations of the second order. Here, for all players, we consider only program strategies. The basis of the theory constructed consists in some assertion concerning the total preservation of solvability and the uniform solution boundedness of an operator equation of the first kind having been proved by the author formerly by means of a generalization of the method of monotone maps. As an auxiliary result of a specific interest we prove a theorem on convexity of the reachable set of a controlled semilinear elliptic equation.
Keywords: noncooperative $n$-person game, semilinear elliptic PDE of the second order, convexity of the reachable set, program strategies, $\varepsilon$-equilibrium.
@article{MGTA_2014_6_1_a5,
     author = {Andrey V. Chernov},
     title = {On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {91--115},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 91
EP  - 115
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/
LA  - ru
ID  - MGTA_2014_6_1_a5
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 91-115
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/
%G ru
%F MGTA_2014_6_1_a5
Andrey V. Chernov. On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 91-115. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/