On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 91-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to obtaining the sufficient conditions for existence of the Nash $\varepsilon$-equilibrium in noncooperative $n$-person games associated with semilinear elliptic partial differential equations of the second order. Here, for all players, we consider only program strategies. The basis of the theory constructed consists in some assertion concerning the total preservation of solvability and the uniform solution boundedness of an operator equation of the first kind having been proved by the author formerly by means of a generalization of the method of monotone maps. As an auxiliary result of a specific interest we prove a theorem on convexity of the reachable set of a controlled semilinear elliptic equation.
Keywords: noncooperative $n$-person game, semilinear elliptic PDE of the second order, convexity of the reachable set, program strategies, $\varepsilon$-equilibrium.
@article{MGTA_2014_6_1_a5,
     author = {Andrey V. Chernov},
     title = {On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {91--115},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 91
EP  - 115
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/
LA  - ru
ID  - MGTA_2014_6_1_a5
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 91-115
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/
%G ru
%F MGTA_2014_6_1_a5
Andrey V. Chernov. On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 91-115. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a5/

[1] Bakulov I. A., Smirnov A. M., Vasilev D. A., Toksikoinfektsii i toksikozy, UGSKhA, Ulyanovsk, 2002

[2] Vakhitov I. S., “Obratnaya zadacha identifikatsii starshego koeffitsienta v uravnenii diffuzii-reaktsii”, Dalnevostochnyi matem. zhurn., 10:2 (2010), 93–105 | MR

[3] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003

[4] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985 | MR

[5] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[7] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[11] Lobanov A. I., Matematicheskie modeli biologicheskikh sistem, opisyvaemye uravneniyami “reaktsiya-diffuziya” i “reaktsiya-diffuziya-konvektsiya”, Dis. $\dots$ dokt. f.-m. n., MFTI, M., 2001

[12] Lubyshev F. V., Manapova A. R., “Raznostnye approksimatsii zadach optimizatsii dlya polulineinykh ellipticheskikh uravnenii v vypukloi oblasti s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zhurn. vychisl. matem. i matem. fiz., 53:1 (2013), 20–46 | DOI | Zbl

[13] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[14] Potapov D. K., “Zadachi upravleniya dlya uravnenii so spektralnym parametrom i razryvnym operatorom pri nalichii vozmuschenii”, Zhurn. Sibirskogo federalnogo un-ta. Ser. Matematika i fizika, 5:2 (2012), 239–245

[15] Potapov D. K., “Optimalnoe upravlenie raspredelennymi sistemami ellipticheskogo tipa vysokogo poryadka so spektralnym parametrom i razryvnoi nelineinostyu”, Izv. RAN. TiSU, 2013, no. 2, 19–24 | MR

[16] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[17] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izvestiya vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[18] Chernov A. V., “Ob $\varepsilon$-ravnovesii v beskoalitsionnykh funktsionalno-operatornykh igrakh so mnogimi uchastnikami”, Trudy IMM UrO RAN, 19, no. 1, 2013, 316–328

[19] Chernov A. V., “Ob odnom podkhode k postroeniyu $\varepsilon$-ravnovesiya v beskoalitsionnykh igrakh, svyazannykh s uravneniyami matematicheskoi fiziki, upravlyaemykh mnogimi igrokami”, Matem. teoriya igr i ee prilozheniya, 5:1 (2013), 104–123 | Zbl

[20] Chernov A. V., “Ob odnom obobschenii metoda monotonnykh operatorov”, Differents. uravneniya, 49:4 (2013), 535–544 | Zbl

[21] Chulichkov A. L., Nikolaev A. V., Lobanov A. I., Guriya G. T., “Porogovaya aktivatsiya svertyvaniya krovi i rost tromba v usloviyakh krovotoka. Teoreticheskii analiz”, Matem. modelirovanie, 12:3 (2000), 75–96 | Zbl

[22] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, American mathematical society, Providence, R.I., 2010 | MR | Zbl