Two-stage network games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 84-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, two-stage network games are studied. First stage of the game is a network formation stage, while on the second stage players choose their strategies according to the network realized on the first stage. Both noncooperative and cooperative settings are considered. In the noncooperative case the Nash equilibrium is used as a solution concept, whereas in the cooperative setting an allocation (the Shapley value) is considered as a solution concept. It is proved that the Shapley value does not satisfy the time-consistency property.
Keywords: network, equilibrium, cooperation, characteristic function, allocation, time-consistency.
@article{MGTA_2013_5_4_a4,
     author = {Leon A. Petrosyan and Artem A. Sedakov and Anatolii O. Bochkarev},
     title = {Two-stage network games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {84--104},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a4/}
}
TY  - JOUR
AU  - Leon A. Petrosyan
AU  - Artem A. Sedakov
AU  - Anatolii O. Bochkarev
TI  - Two-stage network games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 84
EP  - 104
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a4/
LA  - ru
ID  - MGTA_2013_5_4_a4
ER  - 
%0 Journal Article
%A Leon A. Petrosyan
%A Artem A. Sedakov
%A Anatolii O. Bochkarev
%T Two-stage network games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 84-104
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a4/
%G ru
%F MGTA_2013_5_4_a4
Leon A. Petrosyan; Artem A. Sedakov; Anatolii O. Bochkarev. Two-stage network games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 84-104. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a4/

[1] Vorobev V. V., Vrublevskaya I. N. (red.), Pozitsionnye igry, Cb. statei, Nauka, M., 1967

[2] Petrosyan L. A., “Ustoichivost reshenii differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1977, no. 19, 46–52

[3] Petrosyan L. A., Danilov N. N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | MR | Zbl

[4] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya igr, BKhV-Peterburg, SPb., 2012

[5] Petrosyan L. A., Sedakov A. A., “Mnogoshagovye setevye igry s polnoi informatsiei”, Matematicheskaya teoriya igr i ee prilozheniya, 1:2 (2009), 66–81 | Zbl

[6] Bala V., Goyal S., “A non-cooperative model of network formation”, Econometrica, 68:5 (2000), 1181–1231 | DOI | MR

[7] Dutta B., van den Nouweland A., Tijs S., “Link formation in cooperative situations”, International Journal of Game Theory, 27 (1998), 245–256 | DOI | MR | Zbl

[8] Goyal S., Vega-Redondo F., “Network formation and social coordination”, Games and Economic Behavior, 50 (2005), 178–207 | DOI | MR | Zbl

[9] Jackson M., Watts A., “On the formation of interaction networks in social coordination games”, Games and Economic Behavior, 41:2 (2002), 265–291 | DOI | MR | Zbl

[10] Jackson M. O., Wolinsky A., “A Strategic Model of Social and Economic Networks”, Journal of Economic Theory, 71 (1996), 44–74 | DOI | MR | Zbl

[11] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, eds. Kuhn W., Tucker A. W., Princeton University Press, Princeton, 1953, 307–317 | MR