Mean field games based on the stable-like processes
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 33-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the mean field games of $N$ agents based on the nonlinear stable-like processes. The main result of the paper is in the statement that any solution of the limiting mean field consistency equation generates a $1/N$-Nash equilibrium for the approximating game of $N$ agents.
Keywords: stable-like processes, kinetic equation, forward-backward system, dynamic law of large numbers, rates of convergence, tagged particle, $\varepsilon$-Nash equilibrium.
@article{MGTA_2013_5_4_a2,
     author = {Vassili N. Kolokoltsov and Marianna S. Troeva and Wei Yang},
     title = {Mean field games based on the stable-like processes},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {33--65},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a2/}
}
TY  - JOUR
AU  - Vassili N. Kolokoltsov
AU  - Marianna S. Troeva
AU  - Wei Yang
TI  - Mean field games based on the stable-like processes
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 33
EP  - 65
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a2/
LA  - ru
ID  - MGTA_2013_5_4_a2
ER  - 
%0 Journal Article
%A Vassili N. Kolokoltsov
%A Marianna S. Troeva
%A Wei Yang
%T Mean field games based on the stable-like processes
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 33-65
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a2/
%G ru
%F MGTA_2013_5_4_a2
Vassili N. Kolokoltsov; Marianna S. Troeva; Wei Yang. Mean field games based on the stable-like processes. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 4, pp. 33-65. http://geodesic.mathdoc.fr/item/MGTA_2013_5_4_a2/

[1] Ogorodnikov A. A., “Reshenie nelineinykh stokhasticheskikh uravnenii s generatorom polugruppy, imeyuschei osobennost v nule”, Izvestiya vuzov. Matematika, 2011, no. 6, 90–99 | MR | Zbl

[2] Uchaikin V. V., Metod drobnykh proizvodnykh, Izd-vo “Artishok”, Ulyanovsk, 2008

[3] Achdou Y., Capuzzo-Dolcetta I., “Mean field games: numerical methods”, SIAM J. Numer. Anal., 48 (2010), 1136–1162 | DOI | MR | Zbl

[4] Andersson D., Djehiche B., “A maximum principle for SDEs of mean-field type”, Appl. Math. Optim., 63 (2011), 341–356 | DOI | MR | Zbl

[5] Bailleul I. F., “Sensitivity for the Smoluchowski equation”, J. Phys. A: Math. Theor., 44 (2011), 245004 | DOI | MR | Zbl

[6] Bass R. F., Chen Z.-Q., “System of equations driven by stable processes”, J. Prob. Theory Relat. Fields, 134 (2006), 175–214 | DOI | MR | Zbl

[7] Benaim M., Le Boudec J.-Y., A Class Of Mean Field Interaction Models for Computer and Communication Systems, Technical Report LCA-REPORT-2008-010; 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008, 589–590 | DOI

[8] Benaim M., Weibull J., “Deterministoc approximation of stochastic evolution in games”, Econometrica, 71:3 (2003), 873–903 | DOI | MR | Zbl

[9] Bordenave C., McDonald D., Proutiere A., A particle system in interaction with a rapidly varying environment: Mean field limits and applications, 2007, arXiv: math/0701363v2

[10] Buckdahn R., Djehiche B., Li J., Peng S., “Mean-field backward stochastic differential equations: a limit approach”, Ann. Prob., 37:4 (2009), 1524–1565 | DOI | MR | Zbl

[11] Cepeda E., Fournier N., “Smoluchowski's equation: rate of convergence of the Marcus–Lushnikov process”, Stochastic Process. Appl., 121:6 (2011), 1411–1444 | DOI | MR | Zbl

[12] Crisan D., “Particle approximations for a class of stochastic partial differential equations”, Appl. Math. Optim., 54:3 (2006), 293–314 | DOI | MR | Zbl

[13] Del Moral P., Feynman–Kac formulae: genealogical and interacting particle systems with applications, Probability and its Applications, Springer-Verlag, New York, 2004 | MR

[14] Ferrari P. A., “Limit theorems for tagged particles”, Disordered systems and statistical physics: rigorous results (Budapest, 1995), Markov Process. Related Fields, 2, no. 1, 1996, 17–40 | MR | Zbl

[15] Gast N., Gaujal B., “A Mean Field Approach for Optimization in Partcle Systems and Applications”, Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools | DOI

[16] Gomes D. A., Mohr J., Souza R. R., “Discrete time, finite state space mean field games”, J. Math. Pures Appl., 9:93 (2010), 308–328 | DOI | MR | Zbl

[17] Grigorescu I., “Uniqueness of the tagged particle process in a system with local interactions”, Ann. Prob., 27:3 (1999), 1268–1282 | DOI | MR | Zbl

[18] Guéant O., Lasry J.-M., Lions P.-L., Mean Field Games and Applications, Paris-Princeton Lectures on Mathematical Finance, Springer, 2010 | MR

[19] Huang M., Caines P. E., Malhamé R. P., “Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions”, Proceedings of the 42nd IEEE Conference on Decision and Control (Maui, Hawaii, December 2003), 98–103

[20] Huang M., Malhamé R. P., Caines P. E., “Nash equilibria for large-population linear stochastic systens with weakly coupled agents”, Analysis, Control and Optimization of Complex Dynamic Systems, eds. E. K. Boukas, R. P. Malhamé, Springer, 2005, 215–252 | DOI | MR | Zbl

[21] Huang M., Malhamé R. P., Caines P. E., “Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the Nash certainty equivalence principle”, Communications in information and systems, 6 (2006), 221–252 | DOI | MR | Zbl

[22] Huang M., Caines P. E., Malhamé R. P., “Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria”, IEEE Trans. Automat. Contol, 52:9 (2007), 1560–1571 | DOI | MR

[23] Huang M., Caines P. E., Malhamé R. P., “The NCE (mean field) principle with locality dependent cost interactions”, IEEE Trans. Automat. Control, 55:12 (2010), 2799–2805 | DOI | MR

[24] Huang M., “Large-population LQG games involving a major player: the Nash certainty equivalence principle”, SIAM J. Control Optim., 48 (2010), 3318–3353 | DOI | MR | Zbl

[25] Jourdain B., Roux R., “Convergence of a stochastic particle approximation for fractional scalar conservation laws”, (English summary), Stochastic Process. Appl., 121:5 (2011), 957–988 | DOI | MR | Zbl

[26] Kolokoltsov V. N., “On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel”, Advanced Studies in Contemp. Math., 12 (2006), 9–38 | MR | Zbl

[27] Kolokoltsov V. N., “Nonlinear Markov Semigroups and Interacting Lévy Type Processes”, J. Stat. Physics, 126:3 (2007), 585–642 | DOI | MR | Zbl

[28] Kolokoltsov V. N., Nonlinear Markov processes and kinetic equations, Cambridge Tracks in Mathematics, 182, Cambridge Univ. Press, 2010 | MR | Zbl

[29] Kolokoltsov V. N., “Nonlinear Lévy and nonlinear Feller processes: an analytic introduction”, De Gruyter series “Mathematics and Life Sciences”, eds. A. V. Antoniouk, R. V. N. Melnik, 2013, 43–69 | MR

[30] Kolokoltsov V. N., “Nonlinear Markov games on a finite state space (mean-field and binary interactions)”, Intern. J. Statistics and Probability (Canadian Center of Science and Education), 1:1 (2012), 77–91, (Open access journal)

[31] Kolokoltsov V. N., Yang W., Sensitivity analysis for HJB equations with application to coupled backward-forward systems, Preprint, 2012

[32] Kolokoltsov V. N., Yang W., “On existence results of general kinetic equations with a path-dependent feature”, Open Journal of Optimization, 2:2 (2013), 39–44 | DOI

[33] Kolokoltsov V. N., Li J., Yang W., Mean Field Games and Nonlinear Markov Processes, 2012, arXiv: 1112.3744

[34] Kolokoltsov V. N., “Symmetric Stable Laws and Stable-Like Jump-Diffusions”, Proc. London Math. Soc. (3), 80 (2000), 725–768 | DOI | MR | Zbl

[35] Kolokoltsov V. N., Troeva M., Yang W., “On the Rate of Convergence for the Mean-field Approximation of Controlled Diffusions with Large Number of Players”, Dynamic Games and Applications, 2013 | DOI

[36] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, 1990 | MR | Zbl

[37] Lachapelle A., Salomon J., Turinici G., “Computation of mean field equilibria in economics”, Math. Models Methods Appl. Sci., 20 (2010), 567–588 | DOI | MR | Zbl

[38] Lasry J.-M., Lions P.-L., “Jeux á champ moyen. I. Le cas stationnaire. [Mean field games. I. The stationary case]”, C. R. Math. Acad. Sci. Paris, 343:9 (2006), 619–625 (French) | DOI | MR | Zbl

[39] Le Boudec J.-Y., McDonald D., Mundinger J., “A Generic Mean Field Convergence Result for Systems of Interacting Objects”, QEST 2007, 4th International Conference on Quantitative Evaluation of SysTems, 2007, 3–18

[40] Man P. L. W., Norris J. R., Bailleul I., Kraft M., “Coupling algorithms for calculating sensitivities of Smoluchowski's coagulation equation”, SIAM J. Sci. Comput., 32:2 (2010), 635–655 | DOI | MR | Zbl

[41] Olla S., “Central limit theorems for tagged particles and for diffusions in random environment”, Milieux alleatoires, Panor. Syntheses, 12, Soc. Math. France, Paris, 2001, 75–100 | MR | Zbl

[42] Osada H., “Tagged particle processes and their non-explosion criteria”, J. Math. Soc. Japan, 62:3 (2010), 867–894 | DOI | MR | Zbl

[43] Piasecki J., Sadlej K., “Deterministic limit of tagged particle motion: Effect of reflecting boundaries”, Phys. A, 323 (2003), 171–180 | DOI | MR | Zbl

[44] Showalter R. E., “Existence and representation theorems for a semilinear Sobolev equation in Banach space”, SIAM J. Math. Anal., 3:3 (1972), 527–543 | DOI | MR | Zbl

[45] Tarasov V. E., Fractional dynamics. Applications of fractional calculus to dynamics of particles, fields and media, Nonlinear Physical Science, Springer, Heidelberg; Higher Education Press, Beijing, 2010 | DOI | MR | Zbl

[46] Uchaikin V. V., Zolotarev V. M., Chance and Stability: Stable Distributions and their Applications, VSP, Utrecht, 1999 | MR | Zbl