Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2013_5_3_a4, author = {Elena B. Yanovskaya}, title = {The lexicogfraphic prekernel}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {88--114}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a4/} }
Elena B. Yanovskaya. The lexicogfraphic prekernel. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 88-114. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a4/
[1] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (1965), 223–259 | DOI | MR | Zbl
[2] Faigle U., Kern W., Kuipers J., “Computing an element in the lexicographic kernel of a game”, Math. Methods of Operations Research, 63 (2006), 427–433 | DOI | MR | Zbl
[3] Katsev I., Yanovskaya E., “The restricted prenucleolus”, Mathematical Social Sciences, 66:1 (2013), 56–65 | DOI | MR | Zbl
[4] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl
[5] Orshan G., Sudhölter P., Reconfirming the prenucleolus, Working paper 325, Bielefeld University, Center for Mathematical Economics, 2001
[6] Orshan G., Sudhölter P., “The positive core of a cooperative game”, International Journal of Game Theory, 39 (2010), 113–136 | DOI | MR | Zbl
[7] Peleg B., “On the reduced game property and its converse”, International Journal of Game Theory, 15 (1986), 187–200 ; “A correction”, International Journal of Game Theory, 16 (1987), 209 | DOI | MR | Zbl | MR
[8] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Theory and Decision Library. Series C, 34, Kluwer Academic Publishers, 2003 | DOI | MR
[9] Yarom M., “The lexicographic kernel of a cooperative game”, Mathematics of Operations Research, 6 (1981), 66–100 | DOI | MR