Discrete-time bioresorce management problem with asymmetric players
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 72-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete-time game-theoretic model related to a bioresource management problem (fish catching) is investigated. The players (countries or fishing firms) which harvest the fish stock are the participants of the game. Players differ in their time preferences and use different discount factors. The main goal here is to construct the value function for the cooperative solution and to distribute the joint payoff among the players. We propose to use recursive Nash bargaining solution in order to determine cooperative behavior. We present two different approaches of bargaining procedure: as a solution for the hole game or as a solution on each time step.
Keywords: bioresource management problem, asymmetric players, Nash bargaining solution.
@article{MGTA_2013_5_3_a3,
     author = {Anna N. Rettieva},
     title = {Discrete-time bioresorce management problem with asymmetric players},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {72--87},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a3/}
}
TY  - JOUR
AU  - Anna N. Rettieva
TI  - Discrete-time bioresorce management problem with asymmetric players
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 72
EP  - 87
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a3/
LA  - ru
ID  - MGTA_2013_5_3_a3
ER  - 
%0 Journal Article
%A Anna N. Rettieva
%T Discrete-time bioresorce management problem with asymmetric players
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 72-87
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a3/
%G ru
%F MGTA_2013_5_3_a3
Anna N. Rettieva. Discrete-time bioresorce management problem with asymmetric players. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 72-87. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a3/

[1] Mazalov V. V., Rettieva A. N., “Diskretnaya zadacha razdeleniya bioresursov”, Prikladnaya matematika i mekhanika, 75:2 (2011), 259–270 | MR | Zbl

[2] Rettieva A. N., “Diskretnaya zadacha upravleniya bioresursami s asimmetrichnymi igrokami”, Matematicheskaya teoriya igr i ee prilozheniya, 4:4 (2012), 63–72 | Zbl

[3] Breton M., Keoula M. Y., A great fish war model with asymmetric players, Cahiers du GERAD G-2010-73, December 2010

[4] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot–Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR

[5] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI

[6] Mazalov V. V., Rettieva A. N., “Fish wars with many players”, International Game Theory Review, 12:4 (2010), 385–405 | DOI | MR | Zbl