Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2013_5_3_a0, author = {Nikolay A. Zenkevich and Andrey V. Zyatchin}, title = {Cooperative strong equilibrium in a~vehicle routing game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--26}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a0/} }
TY - JOUR AU - Nikolay A. Zenkevich AU - Andrey V. Zyatchin TI - Cooperative strong equilibrium in a~vehicle routing game JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2013 SP - 3 EP - 26 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a0/ LA - ru ID - MGTA_2013_5_3_a0 ER -
Nikolay A. Zenkevich; Andrey V. Zyatchin. Cooperative strong equilibrium in a~vehicle routing game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 3, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2013_5_3_a0/
[1] Zakharov V., Schegryaev A., “Ustoichivaya kooperatsiya v dinamicheskikh zadachakh marshrutizatsii transporta”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 39–56 | Zbl
[2] Petrosyan L. A., “Odna transportnaya teoretiko-igrovaya model na seti”, Matematicheskaya teoriya igr i ee prilozheniya, 3:4 (2011), 89–98 | Zbl
[3] Aas B., Gribkovskaia I., Halskau Sh. Sr., Shlopak A., “Routing of supply vessels to petroleum installations”, International Journal of Physical Distribution Logistics Management, 37:2 (2007), 164–179 | DOI
[4] Aumann R. J., “Acceptable points in general cooperative $n$-person games”, Contributions to the Theory of Games, v. IV, Annals of Mathematics Study, 40, ed. A. W. Tucker, 1959, 287–324 | MR | Zbl
[5] Cornillier F., Boctor F. F., Laporte G., Renaud J., “An exact algorithm for the petrol station replenishment problem”, Journal of the Operational Research Society, 59:5 (2008), 607–615 | DOI | Zbl
[6] Dantzig G. B., Ramser J. H., “The truck dispatching problem”, Management Science, 6:1 (1959), 80–91 | DOI | MR | Zbl
[7] Desrochers M., Lenstra J. K., Savelsbergh M. W. P., “A classification scheme for vehicle-routing and scheduling problems”, European Journal of Operational Research, 46:3 (1990), 322–332 | DOI | Zbl
[8] Dresher M., The mathematics of games of strategy: theory and applications, Rand Corp., Santa Monica, CA, 1961, Chapter 4 | MR | Zbl
[9] Gairing M., Monien B., Tiemann K., “Selfish routing with incomplete information”, Theory of Computing Systems, 42:1 (2008), 91–130 | DOI | MR | Zbl
[10] Galeotti A., Goyal S., Jackson M. O., Vega-Redondo F., Yariv L., “Network Games”, Review of Economic Studies, 77:1 (2010), 218–244 | DOI | MR | Zbl
[11] Jackson M., “The stability and efficiency of economic and social networks”, Advances in economic design, eds. B. Dutta, M. O. Jackson, 2003, 319–361 | DOI
[12] Lau H. C., Sim M., Teo K. M., “Vehicle routing problem with time windows and a limited number of vehicles”, European Journal of Operational Research, 148:3, 559–569 | DOI | MR | Zbl
[13] Luce R. D., Raiffa H., Games and decisions: introduction and critical survey, Wiley, New York, 1957, Chapter 3 | MR | Zbl
[14] Myerson R., “Graphs and cooperation in games”, Mathematics of Operations Research, 2:3 (1977), 225–229 | DOI | MR | Zbl
[15] Myerson R., Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, Mass., 1991 | MR | Zbl
[16] Savelsbergh M. W. P., Sol M., “The general pickup and delivery problem transportation”, Science, 29 (1995), 17–29 | Zbl
[17] Solomon M. M., Desrosiers J., “Time window constrained routing and scheduling problems”, Transportation Science, 22:1 (1988), 1–13 | DOI | MR | Zbl
[18] Taillard E., Badeau P., Gendreau M., Guertin F., Potvin J. Y., “A tabu search heuristic for the vehicle routing problem with soft time windows”, Transportation Science, 31:2 (1997), 170–186 | DOI | Zbl
[19] Zenkevich N., Zyatchin A., “Strong equilibrium technique in differential games”, Game Theory and Applications, 15 (2011), 207–224