Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2013_5_2_a4, author = {Dmitry V. Khlopin}, title = {Necessary conditions of overtaking equilibrium for infinite horizon differential games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {105--136}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a4/} }
TY - JOUR AU - Dmitry V. Khlopin TI - Necessary conditions of overtaking equilibrium for infinite horizon differential games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2013 SP - 105 EP - 136 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a4/ LA - ru ID - MGTA_2013_5_2_a4 ER -
Dmitry V. Khlopin. Necessary conditions of overtaking equilibrium for infinite horizon differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 105-136. http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a4/
[1] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Trudy MI RAN, 257, 2007, 3–271 | MR | Zbl
[2] Aseev S. M., Kryazhimskii A. V., Besov K. O., “Zadachi optimalnogo upravleniya na beskonechnom promezhutke vremeni v ekonomike”, UMN, 67:2(404) (2012), 3–64 | DOI | MR | Zbl
[3] Brykalov S. A., Golovina O. N., Kryazhimskii A. V., “Ravnovesie po Neshu v igrakh mnogikh lits s vyborom momentov vremeni i integralnymi funktsionalami platy”, Sovremennaya matematika i ee prilozheniya, 26 (2005), 42–53 | MR
[4] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[5] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbil. universiteta, Tbilisi, 1977 | MR
[6] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[7] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006
[8] Khlopin D. V., “O rasshirenii konfliktno-upravlyaemykh zadach na beskonechnom promezhutke”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 105–112
[9] Khlopin D. V., “O neobkhodimykh kraevykh usloviyakh dlya silno optimalnogo upravleniya v zadachakh na beskonechnom promezhutke”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 49–58
[10] Khlopin D. V., “O $\tau$-ischezayuschei sopryazhennoi peremennoi v zadachakh upravleniya na beskonechnom promezhutke”, Tezisy konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Vladimir, 29 iyunya – 4 iyulya 2012 goda), 173–174
[11] Chentsov A. G., Konechno-additivnye mery i relaksatsii ekstremalnykh zadach, UIF “Nauka”, Ekaterinburg, 1993
[12] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[13] Yang L., Lektsii po variatsionnomu upravleniyu i teorii optimalnogo upravleniya, Mir, M., 1974
[14] Aseev S. M., Kryazhimskii A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43 (2004), 1094–1119 | DOI | MR | Zbl
[15] Aseev S. M., Veliov V. M., Needle Variations in Infinite-Horizon Optimal Control, Interim Rept., IR-2012-04, IIASA, 2012
[16] Aseev S. M., Veliov V. M., “Maximum Principle for infinite-horizon optimal control problems with dominating discount”, Dynamics of Continuous, Discrete and Impulsive Systems. Series B, 19:1–2 (2012), 43–63 | MR | Zbl
[17] Aubin J., Clarke F., “Shadow Prices and Duality for a Class of Optimal Control Problems”, SIAM J. Control Optim., 17 (1979), 567–586 | DOI | MR | Zbl
[18] Bagh A., “Variational convergence: Approximation and existence of equilibria in discontinuous games”, J. of Econ. Theory, 145 (2010), 1244–1268 | DOI | MR | Zbl
[19] Başar T., Olsder G. J., Dynamic Noncooperative Game Theory, SIAM, 1998 | MR
[20] Bogusz D., “On the existence of a classical optimal solution and of an almost strongly optimal solution for an infinite-horizon control problem”, J. Optim. Theory Appl., 156:2 (2013), 650–682 | DOI | MR | Zbl
[21] Carlson D., “Uniformly overtaking and weakly overtaking optimal solutions in infinite-horizon optimal control: when optimal solutions are agreeable”, J. Optim. Theory Appl., 64:1 (1990), 55–69 | DOI | MR | Zbl
[22] Carlson D., “Nonconvex and Relaxed Infinite-Horizon Optimal Control Problems”, J. Optim. Theory Appl., 78:3 (1993), 465–491 | DOI | MR | Zbl
[23] Carlson D., Haurie A., “A turnpike theory for infinite horizon open-loop differential games with decoupled dynamics”, New Trends in Dynamic Games and Applications, Annals of the Society of Dynamic Games, 3, ed. G. J. Olsder, 1995, 353–376 | MR | Zbl
[24] Carlson D., Haurie A., “Infinite horizon dynamic games with coupled state constraints”, Advances in Dynamic Games. Annals of the International Society of Dynamic Games, 5 (2000), 195–212 | DOI | MR | Zbl
[25] Carlson D., Haurie A., Moresino F., Pourtallier O., “Equilibria in Infinite Horizon Dynamic Games”, Troisième Cycle, Romand de Recherche Opèrationnelle, Zinal, March, 1999
[26] Carlson D., Haurie A., “Infinite horizon control and dynamic games”, Encyclopedia of Optimization, eds. Floudas C. A., Pardalos P. M., Springer, N.Y., 2009, 1598–1603 | DOI
[27] Carlson D., Haurie A., Leizarowitz A., Infinite Horizon Optimal Control. Deterministic and Stochastic Systems, Springer, Berlin, 1991 | MR | Zbl
[28] Chentsov A. G., Asymptotic attainability, Kluwer, Dordrecht, 1997 | MR | Zbl
[29] Clarke F., Optimization and Nonsmooth Analysis, Wiley, N.-Y., 1983 | MR | Zbl
[30] Daniel H. W., “Survey of measurable selection theorems: an update”, Lect. Notes Math., 794, Springer, N.-Y., 1980, 176–219 | DOI | MR
[31] Davidson R., Harris R., “Nonconvexities in Continuous-Time Investment Theory”, Review of Economic Studies, 43 (1981), 235–253 | DOI | MR
[32] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. of Amer. Math. Soc., 3 (1952), 170–174 | MR | Zbl
[33] Halkin H., “Necessary Conditions for Optimal Control Problems with Infinite Horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl
[34] Hammond P. J., Kennan J., “Uniformly Optimal Infinite Horizon Plans”, Intern. Econ. Review, 20:2 (1979), 283–296 | DOI | MR | Zbl
[35] Khlopin D. V., Necessity of vanishing shadow price in infinite horizon control problems, 33 pp., arXiv: 1207.5358
[36] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–984 | DOI | MR
[37] Oliu-Barton M., Vigeral G., “A uniform Tauberian theorem in optimal control”, Advances in Dynamic Games. Annals of the International Society of Dynamic Games, 12 (2012), 199–215 | MR
[38] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon optimal control problems”, J. Optim. Theory Appl., 103:1 (1999), 201–230 | DOI | MR
[39] Seierstad A., “Fields of extremals and infinite horizon optimal control problems”, Optim. Control Appl. Meth., 19 (1998), 377–392 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[40] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987 | MR | Zbl
[41] Sorger G., “Competitive dynamic advertising: A modification of the Case game”, J. Economic Dynamics and Control, 13 (1989), 55–80 | DOI | MR | Zbl
[42] Stern L., “Criteria of optimality in the infinite-time optimal control problem”, J. Optim. Theory Appl., 44:3 (1984), 497–508 | DOI | MR | Zbl
[43] Tolstonogov A., Differential inclusions in a Banach space, Kluwer, Dordrecht, 2000 | MR | Zbl
[44] Vives X., “Nash equilibrium with strategic complementarities”, Journal of Mathematical Economics, 19 (1990), 305–321 | DOI | MR | Zbl
[45] Wachs A. O., Schochetman I. E., Smith R. L., “Average Optimality in Nonhomogeneous Infinite Horizon Markov Decision Processes”, Math. Oper. Res., 36:1 (2011), 147–164 | DOI | MR | Zbl
[46] Zaslavski A., Khan M., “On locally optimal programs in the Robinson-Solow-Srinivasan model”, J. Econ., 99 (2010), 65–92 | DOI | Zbl