The bargaining solution among threshold strategies
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 46-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a bargaining problem which engages a seller (player $I$) and a buyer (player $II$). Each player possesses private information about own reservation price which is unavailable to the opponent. Players appear on the market and announce their prices for a product. If the transaction takes place then the gain of a player is the difference between the negotiated and the reservation prices. We find the equilibrium in this game among threshold strategies
Keywords: bargaining model, threshold strategies, Bayes equilibrium.
@article{MGTA_2013_5_2_a1,
     author = {Vladimir V. Mazalov and Aleksei Y. Kondratev},
     title = {The bargaining solution among threshold strategies},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {46--63},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a1/}
}
TY  - JOUR
AU  - Vladimir V. Mazalov
AU  - Aleksei Y. Kondratev
TI  - The bargaining solution among threshold strategies
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 46
EP  - 63
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a1/
LA  - ru
ID  - MGTA_2013_5_2_a1
ER  - 
%0 Journal Article
%A Vladimir V. Mazalov
%A Aleksei Y. Kondratev
%T The bargaining solution among threshold strategies
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 46-63
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a1/
%G ru
%F MGTA_2013_5_2_a1
Vladimir V. Mazalov; Aleksei Y. Kondratev. The bargaining solution among threshold strategies. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 2, pp. 46-63. http://geodesic.mathdoc.fr/item/MGTA_2013_5_2_a1/

[1] Mazalov V. V., Kondratev A. Yu., “Zadacha o sdelkakh s nepolnoi informatsiei”, Vestn. S.-Peterb. un-ta. Ser. 10, 2012, no. 1, 33–40

[2] Mazalov V. V., Tokareva Yu. S., “Ravnovesie v zadache o sdelkakh s neravnomernym raspredeleniem rezervnykh tsen”, Matematicheskaya Teoriya Igr i ee Prilozheniya, 3:2 (2011), 37–49 | Zbl

[3] Brams S. J., Negotiation games. Applying Game Theory to Bargaining and Arbitration, Routledge, 1990

[4] Chatterjee K., Samuelson W., “Bargaining under incomplete information”, Operations Research, 31:5 (1983), 835–851 | DOI | Zbl

[5] Harsanyi J. C., Selten R., “A generalised Nash solution for two-person bargaining games with incomplete information”, Manag. Sci., 18 (1972), 80–106 | DOI | MR

[6] Klemperer P., The Economic Theory of Auction, Edward Elgar Publishing, Inc., Northampton, MA, 2000

[7] Myerson R., “Two-Person Bargaining Problems with Incomplete Information”, Econometrica, 52 (1984), 461–487 | DOI | MR | Zbl

[8] Myerson R., Satterthwait M. A., “Efficient mechanisms for Bilateral Trading”, Journal of Economic Theory, 29 (1983), 265–281 | DOI | MR | Zbl