On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 104-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to justification of some comparatively simple algorithm for construction of the Nash $\varepsilon$-equilibrium in noncooperative $n$-person games associated with evolutionary semilinear partial differential equations. Here, we consider piecewise program strategies, the time step is assumed to be fixed and controls are assumed to be piecewise constant vectors with values from a given compact set in a finite dimensional space. The main idea of the algorithm consists in the approximation of an original game by a finite multistep perfect information game with subsequent applying of the Kuhn algorithm. The basis of the algorithm under study consists in two assertions concerning, firstly, the total preservation of global solvability of controlled distributed parameter systems, and, secondly, the continuous dependence of solutions to them on piecewise constant controls, both having been proved by the author formerly. The paper is conducted on the example of the first boundary value problem associated with a parabolic second order equation of a rather general form.
Keywords: noncooperative $n$-person game, semilinear partial differential equations, piecewise program strategies, piecewise constant controls, $\varepsilon$-equilibrium.
@article{MGTA_2013_5_1_a5,
     author = {Andrey V. Chernov},
     title = {On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {104--123},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a5/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 104
EP  - 123
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a5/
LA  - ru
ID  - MGTA_2013_5_1_a5
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 104-123
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a5/
%G ru
%F MGTA_2013_5_1_a5
Andrey V. Chernov. On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 104-123. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a5/

[1] Vasin A. A., Morozov V. V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, MGU, M., 2003

[2] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[3] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl

[4] Slobozhanin N. M., “Teorema suschestvovaniya dlya beskonechnykh pozitsionnykh igr”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Sb., Vyp. 1, YaGU, Yakutsk, 1977, 37–42

[5] Slobozhanin N. M., Informatsiya i upravlenie v dinamicheskikh igrakh, Izd-vo S.-Pb. gos. un-ta, S.-Pb., 2002

[6] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[7] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. Ser. Matem. modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[8] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[9] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti funktsionalno-operatornykh uravnenii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2009, no. 3, 130–137

[10] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[11] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[12] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1616–1629 | MR | Zbl

[13] Chernov A. V., “O suschestvovanii $\varepsilon$-ravnovesiya v volterrovykh funktsionalno-operatornykh igrakh bez diskriminatsii”, Matem. teoriya igr i ee prilozheniya, 4:1 (2012), 74–92 | Zbl

[14] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | Zbl

[15] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414 | Zbl

[16] Chernov A. V., “O neotritsatelnosti resheniya pervoi kraevoi zadachi dlya parabolicheskogo uravneniya”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2012, no. 5(1), 167–170