Optimal risk control under functionally restricted disturbances
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 74-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the optimal risk and how to build the strategy optimal for risk in cases where disturbance is constrained by some unknown functional limitation of a certain family. It is shown that for a class of controlled systems, the problem is solvable in the class of strategies with full memory; the optimal risk coincides with the optimal risk in the class quasi-strategy. The description of the optimal risk and the risk-optimal strategies based on the programmed iterations of the regret functional are provided. Examples of a risk-optimal strategy, cases and conditions of degeneration of the iterative process are given.
Keywords: strategy with full memory, Savage criterion, functionally limited disturbance, quasi-strategy, the method of program iterations.
@article{MGTA_2013_5_1_a4,
     author = {Dmitry A. Serkov},
     title = {Optimal risk control under functionally restricted disturbances},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {74--103},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/}
}
TY  - JOUR
AU  - Dmitry A. Serkov
TI  - Optimal risk control under functionally restricted disturbances
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 74
EP  - 103
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/
LA  - ru
ID  - MGTA_2013_5_1_a4
ER  - 
%0 Journal Article
%A Dmitry A. Serkov
%T Optimal risk control under functionally restricted disturbances
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 74-103
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/
%G ru
%F MGTA_2013_5_1_a4
Dmitry A. Serkov. Optimal risk control under functionally restricted disturbances. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 74-103. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[2] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya, I”, Izv. AN SSSR. Tekhn. kibernet., 1973, no. 2, 3–18 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernet., 1983, no. 2, 51–60 | MR

[5] Serkov D. A., “Garantirovannoe upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 71–95 | Zbl

[6] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[7] Chentsov A. G., “Ob igrovoi zadache na minimaks funktsionala”, Doklady AN SSSR, 230:5 (1976), 1047–1050 | MR | Zbl

[8] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Matematicheskii sbornik, 99(141):3 (1976), 394–420 | MR | Zbl

[9] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matem. mekh., 41:5 (1977), 825–832 | MR

[10] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988 | MR | Zbl

[11] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full memory strategies”, Constantin Caratheodory: an intern, tribute, World Sci. Publ., 1991, 636–675 | DOI | MR

[12] Osipov Yu. S., Kryazhimskii A. V., Inverse Problem of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London, 1995 | MR | Zbl

[13] Savage L. J., “The theory of statistical decision”, J. Amer. Stat. Association, 46 (1951), 55–67 | DOI | Zbl