Optimal risk control under functionally restricted disturbances
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 74-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the optimal risk and how to build the strategy optimal for risk in cases where disturbance is constrained by some unknown functional limitation of a certain family. It is shown that for a class of controlled systems, the problem is solvable in the class of strategies with full memory; the optimal risk coincides with the optimal risk in the class quasi-strategy. The description of the optimal risk and the risk-optimal strategies based on the programmed iterations of the regret functional are provided. Examples of a risk-optimal strategy, cases and conditions of degeneration of the iterative process are given.
Keywords: strategy with full memory, Savage criterion, functionally limited disturbance, quasi-strategy, the method of program iterations.
@article{MGTA_2013_5_1_a4,
     author = {Dmitry A. Serkov},
     title = {Optimal risk control under functionally restricted disturbances},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {74--103},
     year = {2013},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/}
}
TY  - JOUR
AU  - Dmitry A. Serkov
TI  - Optimal risk control under functionally restricted disturbances
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 74
EP  - 103
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/
LA  - ru
ID  - MGTA_2013_5_1_a4
ER  - 
%0 Journal Article
%A Dmitry A. Serkov
%T Optimal risk control under functionally restricted disturbances
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 74-103
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/
%G ru
%F MGTA_2013_5_1_a4
Dmitry A. Serkov. Optimal risk control under functionally restricted disturbances. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 74-103. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a4/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[2] Krasovskii N. N., “Differentsialnaya igra sblizheniya-ukloneniya, I”, Izv. AN SSSR. Tekhn. kibernet., 1973, no. 2, 3–18 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernet., 1983, no. 2, 51–60 | MR

[5] Serkov D. A., “Garantirovannoe upravlenie pri funktsionalnykh ogranicheniyakh na pomekhu”, Matematicheskaya teoriya igr i ee prilozheniya, 4:2 (2012), 71–95 | Zbl

[6] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[7] Chentsov A. G., “Ob igrovoi zadache na minimaks funktsionala”, Doklady AN SSSR, 230:5 (1976), 1047–1050 | MR | Zbl

[8] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Matematicheskii sbornik, 99(141):3 (1976), 394–420 | MR | Zbl

[9] Chistyakov S. V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matem. mekh., 41:5 (1977), 825–832 | MR

[10] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988 | MR | Zbl

[11] Kryazhimskii A. V., “The problem of optimization of the ensured result: unimprovability of full memory strategies”, Constantin Caratheodory: an intern, tribute, World Sci. Publ., 1991, 636–675 | DOI | MR

[12] Osipov Yu. S., Kryazhimskii A. V., Inverse Problem of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London, 1995 | MR | Zbl

[13] Savage L. J., “The theory of statistical decision”, J. Amer. Stat. Association, 46 (1951), 55–67 | DOI | Zbl