Formation of new structure of coalitions in voting games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 61-73
Cet article a éte moissonné depuis la source Math-Net.Ru
The new $(n+1)$st player enters the voting game and buys the stock from another players, investing the vector $\alpha=(\alpha_1,\dots,\alpha_n)$: $\sum_{i=1}^n\alpha_{i}\leq M$, $\alpha_i\geq0$, $\forall i=1,\dots,n$. The optimal investment is defined as $\alpha^*$, which maximizes the component of Shapley–Shubik value of entering player. The mathematical statement of the problem is given, some properties of the optimal investment are considered and Monte-Karlo method for the calculation of optimal investment is proposed.
Keywords:
voting game, Shapley–Shubic value, profitable investment, veto-player, Monte-Karlo method.
Mots-clés : perspective coalitions
Mots-clés : perspective coalitions
@article{MGTA_2013_5_1_a3,
author = {Ovanes L. Petrosian},
title = {Formation of new structure of coalitions in voting games},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {61--73},
year = {2013},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a3/}
}
Ovanes L. Petrosian. Formation of new structure of coalitions in voting games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 61-73. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a3/
[1] Petrosyan L. A., Zenkevich N. A., Shevkoplyas E. V., Teoriya Igr, BKhV-Peterburg, Sankt-Peterburg, 2012
[2] Hu X., “An asymmetric Shapley–Shubik power index”, International Journal of Game Theory, 34:1 (2006), 229–240 | MR | Zbl
[3] Shapley L. S., Shubik M., “A Method for Evaluating the Distribution of Power in a Committee System”, American Political Science Review, 48:3 (1954), 787–792 | DOI
[4] Shapley L. S., Shubik M., “On market games”, Journal of Economic Theory, 1:1 (1969), 9–25 | DOI | MR