The algorithm searching Nash equilibria in dynamic network game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 45-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out the assimilation of network formation game, which allows simultaneous actions. This is a dynamic network game with arcs of two kinds: interactional arches and dynamic arches. We have set an algorithm for retrieval of Nash equilibrium in a dynamic network game, which is a modification of the recurrent algorithm for multistage game, and uses the interactional arches' properties. We have estimated the complexity of the algorithm. An example is constructed, which shows the advantages of the modified algorithm in comparison to the standard recurrent algorithm for multistage game.
Keywords: network games, dynamic games, positional games, Nash equilibrium, optimization algorithms, algorithm complexity.
@article{MGTA_2013_5_1_a2,
     author = {Andrey P. Parfyonov},
     title = {The algorithm searching {Nash} equilibria in dynamic network game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {45--60},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a2/}
}
TY  - JOUR
AU  - Andrey P. Parfyonov
TI  - The algorithm searching Nash equilibria in dynamic network game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 45
EP  - 60
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a2/
LA  - ru
ID  - MGTA_2013_5_1_a2
ER  - 
%0 Journal Article
%A Andrey P. Parfyonov
%T The algorithm searching Nash equilibria in dynamic network game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 45-60
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a2/
%G ru
%F MGTA_2013_5_1_a2
Andrey P. Parfyonov. The algorithm searching Nash equilibria in dynamic network game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 45-60. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a2/

[1] Gubko M. V., “Upravlenie organizatsionnymi sistemami s setevym vzaimodeistviem agentov. I. Obzor teorii setevykh igr”, Avtomatika i telemekhanika, 2004, no. 8, 115–132 | MR | Zbl

[2] Gubko M. V., “Teoretiko-igrovaya model formirovaniya torgovoi seti”, Upravlenie bolshimi sistemami, 6, 2004, 56–83

[3] Malafeev O. A., Parfenov A. P., “Reshenie setevykh igr”, Matematicheskoe i kompyuternoe modelirovanie sotsialno-ekonomicheskikh sistem na urovne mnogoagentnogo vzaimodeistviya (vvedenie v problemy ravnovesiya, ustoichivosti i nadezhnosti), SPbGU, SPb., 2006, 697–710

[4] Parfenov A. P., “Mnogoshagovye setevye igry upravleniya potokami”, Vestn. S.-Peterburg. un-ta. Ser. 10, 2009, no. 4, 200–212

[5] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl

[6] Slobozhanin N. M., Informatsiya i upravlenie v dinamicheskikh igrakh, izd.-vo SPbGU, SPb., 2002

[7] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic press inc., London, 1982 | MR | Zbl