A model of electoral behaviour
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a model of electoral behavior on mass elections (for example, parlamentary). There are some important features of these elections that may affect the voter's incentive to participate: 1) no one knows a priori how many voters a going to participate; 2) the number of candidates is considerably smaller than the number of voters and each particular voter seems to have little chance to affect the results of the election. Another issue that affects the turnout is that participation in the election involves certain costs for each voter regardless of their results. We investigate the problem of voting reasonability using the game theory methods. We assume two groups of voters with fixed quantities. Members of each group support their candidate and vote for him only. The strategy of each voter is to participate or not in the election. We study the existence and number of pure and mixed strategy equilibria.
Keywords: voting paradoxes, Nash equilibrium, mixed strategies, deciding vote.
@article{MGTA_2013_5_1_a0,
     author = {Sergey A. Vartanov},
     title = {A model of electoral behaviour},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a0/}
}
TY  - JOUR
AU  - Sergey A. Vartanov
TI  - A model of electoral behaviour
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2013
SP  - 3
EP  - 26
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a0/
LA  - ru
ID  - MGTA_2013_5_1_a0
ER  - 
%0 Journal Article
%A Sergey A. Vartanov
%T A model of electoral behaviour
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2013
%P 3-26
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a0/
%G ru
%F MGTA_2013_5_1_a0
Sergey A. Vartanov. A model of electoral behaviour. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 5 (2013) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/MGTA_2013_5_1_a0/

[1] Vasin A. A., Morozov V. V., Vvedenie v teoriyu igr s prilozheniyami k ekonomike, MAKS Press, M., 2003

[2] Nikolaev A. N., “Teoretiko-igrovaya model povedeniya izbiratelei na vyborakh”, V Moskovskaya mezhdunarodnaya konferentsiya po issledovaniyu operatsii (ORM2007), posvyaschennaya 90-letiyu so dnya rozhdeniya akademika N. N. Moiseeva (Moskva, 10–14 aprelya, 2007), Trudy, MAKS Press, M., 2007

[3] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl

[4] Abramowitz M., Stegun I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, N.Y., 1970 | MR

[5] Gomberg A. M., Marhuenda F., “Endogenous platforms: the case of many parties”, Int. J. of Game Theory, 35:2 (2007), 223–249 | DOI | MR | Zbl

[6] Haan M., Cooreman P., “How majorities can lose the election. Another voting paradox”, Social Choice and Welfare, 20:3 (2003), 509–522 | DOI | MR | Zbl

[7] Heijnen P., “On the probability of breakdown in participation games”, Social Choice and Welfare, 32:3 (2009), 493–511 | DOI | MR | Zbl

[8] Nurmi H., “Voting paradoxes and referenda”, Social Choice and Welfare, 15:3 (1998), 333–350 | DOI | MR | Zbl

[9] Vasin A., Stepanov D., “Endogenous formation of political parties”, Mathematical and Computer Modeling, 48 (2008), 1519–1526 | DOI | MR | Zbl