Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2012_4_4_a5, author = {Julia V. Chirkova}, title = {Price of anarchy for machine load balancing game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {93--113}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a5/} }
Julia V. Chirkova. Price of anarchy for machine load balancing game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 93-113. http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a5/
[1] Czumaj A., Vöcking B., “Tight bounds for worst-case equilibria”, Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'02), 2002, 413–420 | Zbl
[2] Epstein L., “Equilibria for two parallel links: the strong price of anarchy versus the price of anarchy”, Acta Informatica, 47:7–8 (2010), 375–389 | DOI | MR | Zbl
[3] Feldmann R., Gairing M., Lücking T., Monien B., Rode M., “Nashification and the coordination ratio for a selfish routing game”, Proc. of the 30th International Colloquium on Automata, Languages and Programming (ICALP2003), 2003, 514–526 | DOI | MR | Zbl
[4] Korilis Y. A., Lazar A. A., Orda A., “Avoiding the Braess paradox in non-cooperative networks”, J. Appl. Prob., 36 (1999), 211–222 | DOI | MR | Zbl
[5] Mazalov V., Monien B., Schoppmann F., Tiemann R., “Wardrop equilibria and price of stability for bottleneck games with splittable traffic”, Lecture Notes in Computer Science, 4286, 2006, 331–342 | DOI
[6] Murchland J. D., “Braess's paradox of traffic flow”, Transportation Research, 4 (1970), 391–394 | DOI
[7] Roughgarden T., Tardos É., “How bad is selfish routing?”, Journal of the ACM, 49:2 (2002), 236–259 | DOI | MR