A one-sector model of economic growth with a~nonlinear production function and related environmental quality
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 73-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we suggest a stylized optimization one-sector model of national economic growth with a non-linear production function and environmental quality control. A steady-state of the Hamilton system is found analytically, while the optimal trajectory is calculated numerically. The model is calibrated for Russia.
Keywords: mathematical modeling, optimal control, economic growth, sustainable development.
@article{MGTA_2012_4_4_a4,
     author = {Elena A. Rovenskaya},
     title = {A one-sector model of economic growth with a~nonlinear production function and related environmental quality},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a4/}
}
TY  - JOUR
AU  - Elena A. Rovenskaya
TI  - A one-sector model of economic growth with a~nonlinear production function and related environmental quality
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 73
EP  - 92
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a4/
LA  - ru
ID  - MGTA_2012_4_4_a4
ER  - 
%0 Journal Article
%A Elena A. Rovenskaya
%T A one-sector model of economic growth with a~nonlinear production function and related environmental quality
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 73-92
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a4/
%G ru
%F MGTA_2012_4_4_a4
Elena A. Rovenskaya. A one-sector model of economic growth with a~nonlinear production function and related environmental quality. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 73-92. http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a4/

[1] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 3–271 | MR | Zbl

[2] Krasovskii A. A., Metody resheniya zadach optimalnogo upravleniya s beskonechnym gorizontom, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Ekaterinburg, 2008

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983 | MR | Zbl

[4] Rovenskaya E. A., “Model ekonomicheskogogo rosta i svyazannogo s nim kachestva okruzhayuschei sredy”, Matematicheskaya teoriya igr i ee prilozheniya, 3:3 (2011), 67–84 | Zbl

[5] Usova A. A., Issledovanie svoistv Gamiltonovykh sistem i funktsii tseny v dinamicheskikh modelyakh rosta, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Ekaterinburg, 2012

[6] Acemoglu D., Introduction to modern economic growth, MIT Press, 2009

[7] Ariga J. M., Internalizing Environmental Quality in a Simple Endogenous Growth Model, 2002

[8] Ayong le Kama A., Shubert K., The consequences of an endogenous discounting depending on environmental quality, 2002

[9] Bartz S., Kelly D. L., Economic growth and the environment: Theory and facts, Elsevier B.V., 2007

[10] Jouvet P.-A., Miche P., Rotillon G., Optimal growth with pollution: how to use pollution permits?, Elsevier B.V., 2004 | MR

[11] Savin V. V., Rovenskaya E. A., “Remarks on fair wealth accumulation in Russia”, Environment, Development and Sustainability, 13:5 (2011), 923–937 | DOI

[12] Wei W., Alvarez I., Martin S., Sustainability analysis: Viability concepts to consider transient and asymptotical dynamics in socio-ecological tourism-based systems, 2012

[13] World Bank Database, http://data.worldbank.org/