Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 23-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a new approach for traffic flows management in megacity is proposed. This approach is based on the system-optimization (SO) principle and takes into account interests of navigation providers and city administration, considered as players in two level hierarchical game. Existence and uniqueness of Nash equilibrium at the low level of navigation providers are proved and sufficient conditions for finding Stackelberg equilibrium are offered.
Keywords: traffic flow assignment, system equilibrium, Nash equilibrium, Stackelberg equilibrium.
@article{MGTA_2012_4_4_a1,
     author = {Victor V. Zakharov and Alexander Yu. Krylatov},
     title = {Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {23--44},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/}
}
TY  - JOUR
AU  - Victor V. Zakharov
AU  - Alexander Yu. Krylatov
TI  - Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 23
EP  - 44
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/
LA  - ru
ID  - MGTA_2012_4_4_a1
ER  - 
%0 Journal Article
%A Victor V. Zakharov
%A Alexander Yu. Krylatov
%T Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 23-44
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/
%G ru
%F MGTA_2012_4_4_a1
Victor V. Zakharov; Alexander Yu. Krylatov. Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 23-44. http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/

[1] Krylatov A. Yu., “Raspredelenie transportnykh potokov v megapolisakh”, Sbornik statei dvenadtsatoi mezhdunarodnoi nauchno-prakticheskoi konferentsii “Fundamentalnye i prikladnye issledovaniya, razrabotka i primenenie vysokikh tekhnologii v promyshlennosti”, v. 2, Izd-vo Politekhnicheskogo universiteta, SPb., 2011, 356–359

[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vysshaya shkola, M., 1998 | MR | Zbl

[3] Semenov V. V., “Matematicheskie metody modelirovaniya transportnykh potokov”, Sbornik “Novoe v sinergetike. Novaya realnost, novye problemy, novoe pokolenie”, Nauka, M., 2007, 102–133

[4] Kheit F., Matematicheskaya teoriya transportnykh potokov, Mir, M., 1966

[5] Shvetsov V. I., “Algoritmy raspredeleniya transportnykh potokov”, Avtomat. i telemekh., 2009, no. 10, 148–157 | MR | Zbl

[6] Shvetsov V. I., “Matematicheskoe modelirovanie transportnykh potokov”, Avtomat. i telemekh., 2003, no. 11, 3–46 | MR | Zbl

[7] Altman E., Avrachenkov K., Garnaev A., “Closed form solutions for water-filling problem in optimization and game frameworks”, Lecture Notes in Computer Science, 4465, 2007, 153–164 | DOI

[8] Altman E., Avrachenkov K., Garnaev A., “Jamming game in wireless networks with transmission cost”, Telecommunication Systems Journal, 47 (2009), 1–12

[9] Altman E., Basar T., Srikant R., “Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users”, IEEE Transactions on automatic control, 47:6 (2002), 917–930 | DOI | MR

[10] Chowdhury D., Santen L., Schadschneider A., “Statistical physics of vehicular traffic and some related systems”, Phys. Rep., 329 (2000), 199–329 | DOI | MR

[11] Greenshields B. D., “A study of traffic capacity”, Proc. (US) highway research board, 14 (1934), 448–494

[12] Kerner B. S., Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory, Springer, Berlin, 2009 | Zbl

[13] Kerner B. S., Rehborn H., “Experimental properties of complexity in traffic flow”, Phys. Rev. E, 53 (1996), R4275–R4278 | DOI

[14] Ligthill M. J., Whitham F. R. S., “On kinetic waves. II. A theory of traffic flow on crowded roads”, Proc. of the Royal Society Ser. A, 229:1178 (1995), 317–345 | DOI | MR

[15] Sheffi Y., Urban transportation networks: equilibrium analysis with mathematical programming methods, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1985

[16] Treiber M., Hennecke A., Helbing D., “Congested traffic states in empirical observations and microscopic simulations”, Phys. Rev. E, 62 (2000), 1805–1824 | DOI