Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 23-44

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a new approach for traffic flows management in megacity is proposed. This approach is based on the system-optimization (SO) principle and takes into account interests of navigation providers and city administration, considered as players in two level hierarchical game. Existence and uniqueness of Nash equilibrium at the low level of navigation providers are proved and sufficient conditions for finding Stackelberg equilibrium are offered.
Keywords: traffic flow assignment, system equilibrium, Nash equilibrium, Stackelberg equilibrium.
@article{MGTA_2012_4_4_a1,
     author = {Victor V. Zakharov and Alexander Yu. Krylatov},
     title = {Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {23--44},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/}
}
TY  - JOUR
AU  - Victor V. Zakharov
AU  - Alexander Yu. Krylatov
TI  - Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 23
EP  - 44
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/
LA  - ru
ID  - MGTA_2012_4_4_a1
ER  - 
%0 Journal Article
%A Victor V. Zakharov
%A Alexander Yu. Krylatov
%T Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 23-44
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/
%G ru
%F MGTA_2012_4_4_a1
Victor V. Zakharov; Alexander Yu. Krylatov. Traffic flows' system equilibrium in megapolis and navigators' strategies: game theory approach. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 23-44. http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a1/