Game-theoretic model of agents' interaction in a~two-stage market with a~random factor
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine a game-theoretic model of a two-stage market with arbitrageurs. Arbitrageurs are risk-neutral and operate in the conditions of perfect competition. A random factor affects the outcome in the spot market. Thus, the spot price is a random value. We determine the optimal strategies for consumers, producers, and arbitrageurs. We analyze the dependence of producers' market power on parameters of the model. The results show that introduction of the forward market substantially reduces the market power of producers.
Keywords: forward market
Mots-clés : subgame perfect equilibrium, Cournot oligopoly.
@article{MGTA_2012_4_4_a0,
     author = {Alexander A. Vasin and Ekaterina A. Daylova},
     title = {Game-theoretic model of agents' interaction in a~two-stage market with a~random factor},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a0/}
}
TY  - JOUR
AU  - Alexander A. Vasin
AU  - Ekaterina A. Daylova
TI  - Game-theoretic model of agents' interaction in a~two-stage market with a~random factor
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 3
EP  - 22
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a0/
LA  - ru
ID  - MGTA_2012_4_4_a0
ER  - 
%0 Journal Article
%A Alexander A. Vasin
%A Ekaterina A. Daylova
%T Game-theoretic model of agents' interaction in a~two-stage market with a~random factor
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 3-22
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a0/
%G ru
%F MGTA_2012_4_4_a0
Alexander A. Vasin; Ekaterina A. Daylova. Game-theoretic model of agents' interaction in a~two-stage market with a~random factor. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/MGTA_2012_4_4_a0/

[1] Vasin A. A., Nekooperativnye igry v prirode i obschestve, MAKS press, M., 2005

[2] Makarov V. L., Rubinov A. M., Matematicheskaya teoriya ekonomicheskii dinamiki i ravnovesiya, Nauka, M., 1973 | MR

[3] Allaz B., Vila J.-L., “Cournot competition, forward markets and efficiency”, Journal of Economic Theory, 59:1 (1992), 1–16 | DOI

[4] Botterud A., Bhattacharyya A. K., Ilic M., “Futures and spot prices – an analysis of the Scandinavian electricity market”, Proceedings of North American Power Symposium, 2002

[5] Bushnell J., Oligopoly equilibria in electricity contract markets, CSEM Working Paper WP–148, University of California Energy Institute, 2005

[6] Ingersoll J. E., Theory of Financial Decision Making, Rowman Littlefield Publishing, Inc., 1987

[7] Vasin A. A., Kartunova P. A., Sharikova A. A., Dolmatova M., “Comparative analysis of one-stage and two-stage markets”, Contributed paper for the Conference on Economic Design, 2009