Game-theoretical transportation model with limited traffic capacities
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 101-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

$n$-person transportation game over a network $G(?,R,T)$ is considered. The players are in the vertexes $M$ of the network $G$. The aim of each player is to put a predetermined flow capacity to fixed vertex with minimal cost. The set of Nash equilibria is constructed. It is shown that the minimum total cost is achieved in a situation of Nash equilibria. In the second part of the paper we consider a cooperative model in which the players can not share the capacities of the edges.
Keywords: network games, network flows, cooperative games.
Mots-clés : transportation model
@article{MGTA_2012_4_3_a6,
     author = {Ilya A. Seryakov},
     title = {Game-theoretical transportation model with limited traffic capacities},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a6/}
}
TY  - JOUR
AU  - Ilya A. Seryakov
TI  - Game-theoretical transportation model with limited traffic capacities
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 101
EP  - 116
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a6/
LA  - ru
ID  - MGTA_2012_4_3_a6
ER  - 
%0 Journal Article
%A Ilya A. Seryakov
%T Game-theoretical transportation model with limited traffic capacities
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 101-116
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a6/
%G ru
%F MGTA_2012_4_3_a6
Ilya A. Seryakov. Game-theoretical transportation model with limited traffic capacities. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 101-116. http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a6/

[1] Bellman R. E., Dinamicheskoe programmirovanie, IL, M., 1960 | MR

[2] Zenkevich N. A., Petrosyan L. A., Yang D. V. K., Dinamicheskie igry i ikh primeneniya v menedzhmente, Izd-vo “Vysshaya shkola menedzhmenta”, SPb., 2009

[3] Korbut A. A., Finkelshtein Yu. Yu., Diskretnoe programmirovanie, Nauka, M., 1969 | MR | Zbl

[4] Kormen T., Leizerson Ch., Rivest R., Shtain K., Algoritmy: postroenie i analiz, Vilyams, M., 2005

[5] Levitin A. V., Algoritmy: vvedenie v razrabotku i analiz, Vilyams, M., 2006

[6] Petrosyan L. A., “Odna transportnaya teoretiko-igrovaya model na seti”, Matematicheskaya teoriya igr i ee prilozheniya, 3:4 (2011), 89–98 | Zbl

[7] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. Un-ta v S. Peterburge, SPb., 2004

[8] Bellman R. E., “On a Routing problem”, Quart. Appl. Math., 16 (1958), 87–90 | MR | Zbl

[9] Hu T. C., Integer Programming and Network Flow, Addison-Wesley, Boston, 1969 | MR