The Shapley value of TU games, differences of the cores of convex games, and the Steiner point of convex compact sets
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 58-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the implications of the possibility of decomposition of any TU game $v$ into the difference of two convex games $v_1$ and $v_2$, i.e. $v=v_1-v_2.$ In particular, we prove that the Shapley value of a game $v$ is the difference of the Steiner points of the cores $C(v_1)$ and $C(v_2),$ and, in particular, for a convex game $v$ the Shapley value is the Steiner point of its core. Some properties of this interpretation are studied. A new definition of the Weber set of a TU game is considered.
Keywords: TU games, convex games, the Shapley value, the Steiner point, differences of the cores.
@article{MGTA_2012_4_3_a4,
     author = {Sergei L. Pechersky},
     title = {The {Shapley} value of {TU} games, differences of the cores of convex games, and the {Steiner} point of convex compact sets},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {58--85},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a4/}
}
TY  - JOUR
AU  - Sergei L. Pechersky
TI  - The Shapley value of TU games, differences of the cores of convex games, and the Steiner point of convex compact sets
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 58
EP  - 85
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a4/
LA  - ru
ID  - MGTA_2012_4_3_a4
ER  - 
%0 Journal Article
%A Sergei L. Pechersky
%T The Shapley value of TU games, differences of the cores of convex games, and the Steiner point of convex compact sets
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 58-85
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a4/
%G ru
%F MGTA_2012_4_3_a4
Sergei L. Pechersky. The Shapley value of TU games, differences of the cores of convex games, and the Steiner point of convex compact sets. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 3, pp. 58-85. http://geodesic.mathdoc.fr/item/MGTA_2012_4_3_a4/

[1] Vasilev V. A., “Ob odnom klasse delezhei v kooperativnykh igrakh”, DAN SSSR, 256 (1981), 265–268 | MR | Zbl

[2] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1995 | MR

[3] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evropeiskogo universiteta v Sankt-Peterburge, SPb., 2004

[4] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, DAN SSSR, 175 (1967), 764–766 | Zbl

[5] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[6] Aubin J.-P., “Locally Lipschitz Cooperative Games”, Journal of Math. Econ., 8:2 (1981), 241–262 | DOI | MR | Zbl

[7] Azrieli Y., Lehrer E., “On some families of cooperative fuzzy games”, Int. Journal of Game Theory, 36:1 (2007), 1–16 | DOI | MR

[8] Danilov V. I., Koshevoi G. A., “Cores of cooperative games, superdiffe-rentials of functions, and the Minkowski difference of sets”, Journal of Math. Analysis and Appl., 247:1 (2000), 1–14 | DOI | MR | Zbl

[9] Ichiishi T., The Cooperative Nature of the Firm, Cambridge University Press, Cambridge, MA, 1993

[10] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, Springer-Verlag, N.Y.–Berlin, 2003 | DOI | MR

[11] Kuipers J., Vermeulen D., Voorneveld M., “A Generalization of the Shapley–Ichiishi result”, Int. Journal of Game Theory, 39:4 (2010), 585–602 | DOI | MR | Zbl

[12] Meyer W. J., “Characterization of the Steiner point”, Pacific Journal Math., 35:3 (1970), 717–725 | DOI | MR

[13] Pechersky S., “Positively homogeneous quasidifferentiable functions and their applications in cooperative game theory”, Math. Programming Study, 29 (1986), 135–144 | DOI | MR | Zbl

[14] Pechersky S., “The linear bargaining solution”, Russian contribution to game theory and equilibrium theory, eds. T. Drissen at al., Springer, Berlin–Heidelberg–N.Y., 2006, 153–164 | DOI | Zbl

[15] Pechersky S., “On the superlinear bargaining solution”, Russian con-tribution to game theory and equilibrium theory, eds. T. Drissen at al., Springer, Berlin–Heidelberg–N.Y., 2006, 165–174 | DOI | Zbl

[16] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Academic Press, Boston–Dorderecht, 2003 | MR

[17] Shapley L., “Cores of convex games”, Int. Journal of Game Theory, 1:1 (1971), 11–26 | DOI | MR | Zbl

[18] Sharkey W., “Cooperative Games with Large Cores”, Int. Journal of Game Theory, 11:1 (1982), 175–182 | DOI | MR | Zbl

[19] Shephard G. C., “The Steiner point of a convex polytope”, Canadian Journal of Math., 18 (1966), 1294–1300 | DOI | MR | Zbl

[20] Weber R. J., “Probabilistic values for games”, The Shapley value, Essays in Honor of Lloyd S. Shapley, ed. A. E. Roth, Cambridge University Press, Cambridge, UK, 1988, 101–119 | DOI | MR

[21] Yang W., Liu J., Liu X., “Aubin cores and bargaining sets for convex cooperative fuzzy games”, Int. Journal of Game Theory, 40:3 (2011), 467–480 | DOI | MR