The game-theoretical model of selection firms in the logistics market
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 14-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the logistics market with different types of firm-carriers and some customers in need to transport their goods is considered. The problem of choosing firm-carrier to delivery of orders is suggested. The game-theoretical approach is used to solve such problem. Different cases of number of firm-carriers in the market are considered. The points of Nash equilibrium for customers in every cases are found. The existence of such equilibrium is proved.
Keywords: logistics market, the problem of choosing firm-carrier, n-person game with full information, Nash equilibrium.
@article{MGTA_2012_4_2_a1,
     author = {Vladimir M. Bure and Anna A. Sergeeva},
     title = {The game-theoretical model of selection firms in the logistics market},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {14--38},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a1/}
}
TY  - JOUR
AU  - Vladimir M. Bure
AU  - Anna A. Sergeeva
TI  - The game-theoretical model of selection firms in the logistics market
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 14
EP  - 38
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a1/
LA  - ru
ID  - MGTA_2012_4_2_a1
ER  - 
%0 Journal Article
%A Vladimir M. Bure
%A Anna A. Sergeeva
%T The game-theoretical model of selection firms in the logistics market
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 14-38
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a1/
%G ru
%F MGTA_2012_4_2_a1
Vladimir M. Bure; Anna A. Sergeeva. The game-theoretical model of selection firms in the logistics market. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 14-38. http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a1/

[1] Bure V. M., “Teoretiko-igrovaya model odnoi sistemy massovogo obsluzhivaniya”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 2002, no. 2(9), 3–5 | MR

[2] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, ucheb. posobie dlya un-tov, Vysshaya shkola, Knizhnyi dom “Universitet”, M., 1998 | MR | Zbl

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | Zbl

[4] Ghiani G., Laporte G., Musmanno R., Introduction to Logistics Systems Planning and Control, John Wiley and Sons, London, 2004

[5] Daganzo C., Logistics system analysis, Shpringer, Berlin, 1996

[6] Langevin A., Riopel D., Logistics systems: design and optimization, Springer, New York, 2005 | MR

[7] Linke C., Voorde E., Borges H., etc., Transport logistics: shared solutions to common challenges, OECD Publications, Paris, 2002

[8] Medonza A., Ventura J., “Estimating freight rates in inventory replenishment and supplier selection decisions”, Logistics research, Springer, 2009, 185–196

[9] Nooper J., Hompel M., “Analysis of the relationship between available information and performance in facility logistics”, Logistics research, Springer, 2009, 173–183 | DOI