Network game of emission reduction
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a $n$-person network game theoretical model of emission reduction is considered. Each player has its own evolution of the stock of accumulated pollution. Dynamic of player $i$, $i=1,\dots,n$ depends on emissions of players $k\in K_i$, where $K_i$ is the set of players which are connected by arcs with player $i$. Nash equilibrium is constructed. The cooperative game is considered. As optimal imputation the proportional solution is proposed.
Keywords: network game, Nash equilibrium, imputation distribution procedure.
Mots-clés : proportional solution
@article{MGTA_2012_4_2_a0,
     author = {Anna V. Belitskaia and Leon A. Petrosyan},
     title = {Network game of emission reduction},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a0/}
}
TY  - JOUR
AU  - Anna V. Belitskaia
AU  - Leon A. Petrosyan
TI  - Network game of emission reduction
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 3
EP  - 13
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a0/
LA  - ru
ID  - MGTA_2012_4_2_a0
ER  - 
%0 Journal Article
%A Anna V. Belitskaia
%A Leon A. Petrosyan
%T Network game of emission reduction
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 3-13
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a0/
%G ru
%F MGTA_2012_4_2_a0
Anna V. Belitskaia; Leon A. Petrosyan. Network game of emission reduction. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/MGTA_2012_4_2_a0/

[1] Zenkevich N. A., Petrosyan L. A., Yang D. V. K., Dinamicheskie igry i ikh prilozheniya v menedzhmente, Izd-vo “Vysshaya shkola menedzhmenta”, SPb., 2009

[2] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik LGU, 1977, no. 19, 46–52 | Zbl

[3] Petrosyan L. A., “Kooperativnye igry na setyakh”, Trudy instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 143–150

[4] Petrosyan L. A., Kozlovskaya N. V., Ilina A. V., “Koalitsionnoe reshenie v zadache sokrascheniya vybrosov”, Vestnik SPbGU, 2010, ser. 10, No 2, 46–60

[5] Dockner E. J., Jorgensen S., Van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, 2000, 41–85 | MR

[6] Haurie A., Zaccour G., “Differential game models of global environment management”, Annals of the International Society of Dynamic Games, 1995, 3–24 | MR

[7] Kaitala V., Pohjola M., “Sustainable international agreements on green house warming: a game theory study”, Annals of the International Society of Dynamic Games, 1995, 67–88 | MR

[8] Petrosyan L., Differential Games of Pursuit, World Scientific Pbl., 1993 | MR | Zbl

[9] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, Journal of Economic Dynamics and Control, 27 (2003), 381–398 | DOI | MR

[10] Yeung D. W. K., Petrosyan L. A., Cooperative Stochastic Differential Games, Springer, 2006, 41–85 | MR