Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2012_4_1_a3, author = {Nadezhda V. Smirnova and Svetlana I. Tarashnina}, title = {Geometrical properties of the $[0,1]$-nucleolus in cooperative {TU-games}}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {55--73}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/} }
TY - JOUR AU - Nadezhda V. Smirnova AU - Svetlana I. Tarashnina TI - Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2012 SP - 55 EP - 73 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/ LA - ru ID - MGTA_2012_4_1_a3 ER -
%0 Journal Article %A Nadezhda V. Smirnova %A Svetlana I. Tarashnina %T Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2012 %P 55-73 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/ %G ru %F MGTA_2012_4_1_a3
Nadezhda V. Smirnova; Svetlana I. Tarashnina. Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/
[1] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v Sankt-Peterburge, SPb., 2004
[2] Smirnova N. V., Tarashnina S. I., “Ob odnom obobschenii $N$-yadra v kooperativnykh igrakh”, Diskretnyi analiz i issledovanie operatsii, 18:4 (2011), 77–93 | MR | Zbl
[3] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl
[4] Maschler M., “The bargaining set, kernel, and nucleolus: a survey”, Handbook of Game Theory, v. 1, eds. Aumann R. J., Hart S., Elsevier Science Publishers BV, 1992, 591–665 | MR
[5] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of operations research, 4 (1979), 303–338 | DOI | MR | Zbl
[6] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR
[7] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl
[8] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl
[9] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, 1953, 307–317 | MR
[10] Sudhölter P., “The modified nucleolus: properties and axiomatizations”, International Journal of Game Theory, 26 (1997), 147–182 | DOI | MR | Zbl
[11] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, TOP, 19:1 (2011), 150–166 | DOI | MR | Zbl