Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a new solution concept of a cooperative TU-game called the $[0,1]$-nucleolus. It is based on the ideas of the $SM$-nucleolus, the modiclus and the prenucleolus. The $[0,1]$-nucleolus takes into account both the constructive power $v(S)$ and the blocking power $v^*(S)$ of coalition $S$ with coefficients $\alpha$ and $1-\alpha$, accordingly, with $\alpha\in[0,1]$. The geometrical structure of the $[0,1]$-nucleolus is investigated. We prove that the solution consists of a finite number of sequentially connected segments in $R^n$. The $[0,1]$-nucleolus is represented by the unique point for the class of constant-sum games.
Keywords: TU-game, Kohlberg's theorem, the prenucleolus, the $SM$-nucleolus, the $[0,1]$-nucleolus.
Mots-clés : solution concept
@article{MGTA_2012_4_1_a3,
     author = {Nadezhda V. Smirnova and Svetlana I. Tarashnina},
     title = {Geometrical properties of the $[0,1]$-nucleolus in cooperative {TU-games}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/}
}
TY  - JOUR
AU  - Nadezhda V. Smirnova
AU  - Svetlana I. Tarashnina
TI  - Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 55
EP  - 73
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/
LA  - ru
ID  - MGTA_2012_4_1_a3
ER  - 
%0 Journal Article
%A Nadezhda V. Smirnova
%A Svetlana I. Tarashnina
%T Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 55-73
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/
%G ru
%F MGTA_2012_4_1_a3
Nadezhda V. Smirnova; Svetlana I. Tarashnina. Geometrical properties of the $[0,1]$-nucleolus in cooperative TU-games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 55-73. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a3/

[1] Pecherskii S. L., Yanovskaya E. B., Kooperativnye igry: resheniya i aksiomy, Izd-vo Evrop. un-ta v Sankt-Peterburge, SPb., 2004

[2] Smirnova N. V., Tarashnina S. I., “Ob odnom obobschenii $N$-yadra v kooperativnykh igrakh”, Diskretnyi analiz i issledovanie operatsii, 18:4 (2011), 77–93 | MR | Zbl

[3] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl

[4] Maschler M., “The bargaining set, kernel, and nucleolus: a survey”, Handbook of Game Theory, v. 1, eds. Aumann R. J., Hart S., Elsevier Science Publishers BV, 1992, 591–665 | MR

[5] Maschler M., Peleg B., Shapley L. S., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of operations research, 4 (1979), 303–338 | DOI | MR | Zbl

[6] Peleg B., Sudhölter P., Introduction to the theory of cooperative games, Kluwer Acad. Publ., Boston–Dordrecht–London, 2003 | MR

[7] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl

[8] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17 (1969), 1163–1170 | DOI | MR | Zbl

[9] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. II, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, 1953, 307–317 | MR

[10] Sudhölter P., “The modified nucleolus: properties and axiomatizations”, International Journal of Game Theory, 26 (1997), 147–182 | DOI | MR | Zbl

[11] Tarashnina S., “The simplified modified nucleolus of a cooperative TU-game”, TOP, 19:1 (2011), 150–166 | DOI | MR | Zbl