Solution for one-stage bidding game with incomplete information
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 32-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a model of one-stage bidding between two differently informed stockmarket agents where one unit of risky asset (share) is traded. The random liquidation price of a share may take two values: the integer positive $m$ with probability $p$ and $0$ with probability $1-p$. Player 1 (insider) is informed about the price, Player 2 is not. Both players know probability $p$. Player 2 knows that Player 1 is an insider. Both players propose simultaneously their bids. The player who posts the larger price buys one share from his opponent for this price. Any integer bids are admissible. The model is reduced to zero-sum game with lack of information on one side. We construct the solution of this game for any $p$ and $m$: we find optimal strategies of both players and describe recurrent mechanism for calculating game value. The results are illustrated by means of computer simulation.
Keywords: bidding, asymmetric information, equalizing strategies, optimal strategies.
@article{MGTA_2012_4_1_a2,
     author = {Marina S. Sandomirskaia and Victor K. Domansky},
     title = {Solution for one-stage bidding game with incomplete information},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {32--54},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/}
}
TY  - JOUR
AU  - Marina S. Sandomirskaia
AU  - Victor K. Domansky
TI  - Solution for one-stage bidding game with incomplete information
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2012
SP  - 32
EP  - 54
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/
LA  - ru
ID  - MGTA_2012_4_1_a2
ER  - 
%0 Journal Article
%A Marina S. Sandomirskaia
%A Victor K. Domansky
%T Solution for one-stage bidding game with incomplete information
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2012
%P 32-54
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/
%G ru
%F MGTA_2012_4_1_a2
Marina S. Sandomirskaia; Victor K. Domansky. Solution for one-stage bidding game with incomplete information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 32-54. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/

[1] Domanskii V. K., Kreps V. L., “Moment obnaruzheniya “insaiderskoi” informatsii na torgakh s asimmetrichnoi informirovannostyu agentov”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 399–416 | Zbl

[2] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl

[3] Kreps V. L., “Model odnoshagovogo birzhevogo torga”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:6 (2009), 1086–1087

[4] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120 | MR

[5] De Meyer B., Moussa Saley H., “On the Strategic Origin of Brownian Motion in Finance”, Int. Journal of Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl

[6] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, Int. J. Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl