Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2012_4_1_a2, author = {Marina S. Sandomirskaia and Victor K. Domansky}, title = {Solution for one-stage bidding game with incomplete information}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {32--54}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/} }
TY - JOUR AU - Marina S. Sandomirskaia AU - Victor K. Domansky TI - Solution for one-stage bidding game with incomplete information JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2012 SP - 32 EP - 54 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/ LA - ru ID - MGTA_2012_4_1_a2 ER -
Marina S. Sandomirskaia; Victor K. Domansky. Solution for one-stage bidding game with incomplete information. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 4 (2012) no. 1, pp. 32-54. http://geodesic.mathdoc.fr/item/MGTA_2012_4_1_a2/
[1] Domanskii V. K., Kreps V. L., “Moment obnaruzheniya “insaiderskoi” informatsii na torgakh s asimmetrichnoi informirovannostyu agentov”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 399–416 | Zbl
[2] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964 | Zbl
[3] Kreps V. L., “Model odnoshagovogo birzhevogo torga”, Obozrenie prikladnoi i promyshlennoi matematiki, 16:6 (2009), 1086–1087
[4] Kreps V. L., “Povtoryayuschiesya igry, modeliruyuschie birzhevye torgi, i vozvratnye posledovatelnosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 109–120 | MR
[5] De Meyer B., Moussa Saley H., “On the Strategic Origin of Brownian Motion in Finance”, Int. Journal of Game Theory, 31 (2002), 285–319 | DOI | MR | Zbl
[6] Domansky V., “Repeated games with asymmetric information and random price fluctuations at finance markets”, Int. J. Game Theory, 36:2 (2007), 241–257 | DOI | MR | Zbl