Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2011_3_4_a2, author = {Nikolay A. Krasovskiy and Alexander M. Tarasyev}, title = {Decomposition algorithm of searching equilibria in the dynamical game}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {49--88}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a2/} }
TY - JOUR AU - Nikolay A. Krasovskiy AU - Alexander M. Tarasyev TI - Decomposition algorithm of searching equilibria in the dynamical game JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2011 SP - 49 EP - 88 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a2/ LA - ru ID - MGTA_2011_3_4_a2 ER -
%0 Journal Article %A Nikolay A. Krasovskiy %A Alexander M. Tarasyev %T Decomposition algorithm of searching equilibria in the dynamical game %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2011 %P 49-88 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a2/ %G ru %F MGTA_2011_3_4_a2
Nikolay A. Krasovskiy; Alexander M. Tarasyev. Decomposition algorithm of searching equilibria in the dynamical game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 49-88. http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a2/
[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 271 pp. | MR
[2] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976, 328 pp. | MR
[3] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993, 184 pp. | MR
[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[5] Kryazhimskii A. V., Osipov Yu. S., “O differentsialno-evolyutsionnykh igrakh”, Tr. Mat. in-ta RAN, 211, 1995, 257–287 | MR | Zbl
[6] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 390 pp. | MR | Zbl
[7] Axelrod R., The evolution of cooperation, Basic Books, New York, 1984
[8] Barrett S., “International environmental agreements as games”, Conflicts and Cooperation in Managing Environmental Resources, ed. R. Pethig, Springer-Verlag, Berlin, 1990, 11–37
[9] Basar T., Olsder G. J., Dynamic noncooperative game theory, Academic Press, London, 1982, 519 pp. | MR | Zbl
[10] Chander P., Tulkens H., “Theoretical foundations of negotiations and cost sharing in transfrontier pollution problems”, European Economic Review, 36 (1992), 388–398 | DOI
[11] Ehtamo H., Hamalainen R. P., “A cooperative incentive equilibrium for a resource management problem”, J. Econom. Dynam. Control, 17 (1993), 659–678 | DOI | MR | Zbl
[12] Ellerman A. D., Decaux A., Analysis of post-Kyoto $CO2$ emissions trading using marginal abatement curves, Joint Program Report Series, No 40, Massachusetts Institute of Technology, Cambridge, 1998, 32 pp.
[13] Fudenberg D., Kreps D. M., “Learning mixed equilibria”, Games and Econ. Behavior, 5 (1993), 320–367 | DOI | MR | Zbl
[14] Hoel M., “Global environmental problems: the effect of unilateral actions taken by one country”, J. of Environmental Economics and Management, 20 (1991), 55–70 | DOI
[15] Hoffbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 2001, 323 pp. | MR
[16] Kaniovski Yu. M., Young H. P., “Learning dynamics in games with stochastic perturbations”, Games and Econ. Behavior, 11 (1995), 330–363 | DOI | MR | Zbl
[17] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhauser, Boston etc., 1994, 320 pp. | Zbl
[18] Kryazhimskii A. V., Tarasyev A. M., Equilibrium and guaranteeing solutions in evolutionary nonzero sum games, IIASA Interim Report IR-98-003, IIASA, Laxenburg, 1998, 56 pp.
[19] Mäler K. G., “The acid rain game”, Valuation Methods and Policy Making, Environmental Economics, eds. H. Folmer, E. van Ireland, Elsevier, Amsterdam, 1989, 231–252
[20] Nentjes A., “An economic model of transfrontier pollution abatement”, Public finance, trade and development, ed. V. Tanzi, Wayne State University Press, Detroit, Mich., 1993, 243–261
[21] Nentjes A., “Control of reciprocal transboundary pollution and joint implementation”, Economic Instruments for Air Pollution Control, eds. G. Klaassen, F. Foersund, Kluwer, 1994, 209–230 | DOI
[22] Nowak M., Sigmund K., “The evolution of stochastic strategies in the Prisoner's Dilemma”, Acta Applic. Math., 20 (1992), 247–265 | DOI | MR
[23] Smale S., “The prisoner's dilemma and dynamical systems associated to non-cooperative games”, Econometrica, 48:7 (1980), 1617–1634 | DOI | MR | Zbl
[24] Tol R., The benefits of greenhouse gas emission reduction: an application of FUND, Working Paper FNU-64, Hamburg University, Hamburg, 2005, 33 pp.
[25] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, Inverse and Ill-Posed Probl. Ser., VSP, Utrecht, 1995, 255 pp. | MR | Zbl
[26] Zangwill W. I., Garcia C. B., Pathways to solutions, fixed points, and equilibria, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981 | Zbl