The prenucleolus of games with restricted cooperation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 23-48
Voir la notice de l'article provenant de la source Math-Net.Ru
A cooperative game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$, $N\in\Omega$ is a collection of feasible coalitions, $v\colon\Omega\to\mathbb R$ is a characteristic function. The definition implies that if $\Omega=2^N$, then the game $(N,v,\Omega)=(N,v)$ is a classical cooperative game with transferable utilities (TU). The class of all games with restricted cooperation $\mathcal G^r$ with an arbitrary universal set of players is considered. The prenucleolus for the class is defined in the same way as for classical TU games. Necessary and sufficient conditions on a collection $\Omega$ providing existence and singlevaluedness of the prenucleoli for the class $\mathcal G^r$ are found Axiomatic characterizations of the prenucleolus for games with two-type collections $\Omega$ generated by coalitional structures are given.
Keywords:
cooperative game, restricted cooperation, prenucleolus
Mots-clés : coalitional structure.
Mots-clés : coalitional structure.
@article{MGTA_2011_3_4_a1,
author = {Ilya V. Katsev and Elena B. Yanovskaya},
title = {The prenucleolus of games with restricted cooperation},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {23--48},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/}
}
TY - JOUR AU - Ilya V. Katsev AU - Elena B. Yanovskaya TI - The prenucleolus of games with restricted cooperation JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2011 SP - 23 EP - 48 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/ LA - ru ID - MGTA_2011_3_4_a1 ER -
Ilya V. Katsev; Elena B. Yanovskaya. The prenucleolus of games with restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 23-48. http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/