The prenucleolus of games with restricted cooperation
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 23-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A cooperative game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$, $N\in\Omega$ is a collection of feasible coalitions, $v\colon\Omega\to\mathbb R$ is a characteristic function. The definition implies that if $\Omega=2^N$, then the game $(N,v,\Omega)=(N,v)$ is a classical cooperative game with transferable utilities (TU). The class of all games with restricted cooperation $\mathcal G^r$ with an arbitrary universal set of players is considered. The prenucleolus for the class is defined in the same way as for classical TU games. Necessary and sufficient conditions on a collection $\Omega$ providing existence and singlevaluedness of the prenucleoli for the class $\mathcal G^r$ are found Axiomatic characterizations of the prenucleolus for games with two-type collections $\Omega$ generated by coalitional structures are given.
Keywords: cooperative game, restricted cooperation, prenucleolus
Mots-clés : coalitional structure.
@article{MGTA_2011_3_4_a1,
     author = {Ilya V. Katsev and Elena B. Yanovskaya},
     title = {The prenucleolus of games with restricted cooperation},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {23--48},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/}
}
TY  - JOUR
AU  - Ilya V. Katsev
AU  - Elena B. Yanovskaya
TI  - The prenucleolus of games with restricted cooperation
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 23
EP  - 48
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/
LA  - ru
ID  - MGTA_2011_3_4_a1
ER  - 
%0 Journal Article
%A Ilya V. Katsev
%A Elena B. Yanovskaya
%T The prenucleolus of games with restricted cooperation
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 23-48
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/
%G ru
%F MGTA_2011_3_4_a1
Ilya V. Katsev; Elena B. Yanovskaya. The prenucleolus of games with restricted cooperation. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 23-48. http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a1/

[1] Aumann R. J., Dr'eze J. N., “Cooperative games with coalition structure”, Int. Journal of Game Theory, 3 (1974), 217–237 | DOI | MR | Zbl

[2] Davis M., Maschler M., “The kernel of a cooperative game”, Naval Res. Logist. Quart., 12 (1965), 223–259 | DOI | MR | Zbl

[3] Kamijo Y., “A two-step value for cooperative games with coalitional structures”, International Game Theory Review, 11 (2009), 207–214 | DOI | MR | Zbl

[4] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl

[5] Llerena F., “An axiomatization of the core of games with restricted cooperation”, Economic Letters, 9 (1979), 80–84 | MR

[6] Myerson R. B., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl

[7] Orshan G., “The prenucleolus and the reduced game property: equal treatment replaces anonymity”, International Journal of Game Theory, 22 (1993), 241–248 | DOI | MR | Zbl

[8] Owen G., “Values of games with a priori unions”, Essays in Mathematical Economics and Game Theory, eds. Henn R., Moeschlin O., Springer-Verlag, Berlin, 1977, 76–88 | DOI | MR

[9] Peleg B., “On the reduced game property and its converse”, Int. J. Game Theory, 15 (1986), 187–200 ; “A Correction”, Int. J. Game Theory, 16 (1987), 290 | DOI | MR | Zbl | DOI | MR

[10] Peleg B., Sudhölter P., Introduction to the Theory of Cooperative Games, Theory and Decision Library. Series C, 34, Kluwer Ecademic Publishers, 2003, 380 pp. | DOI | MR

[11] Reijnierse H., Potters J., “The $\mathcal B$-nucleolus of $TU$-games”, Games and Economics Behavior, 24 (1998), 77–96 | DOI | MR | Zbl