Threshold models of reciprocal insurance
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gaming models of reciprocal insurance is considered. In the gaming profile there is a choice of a player to take part or not to take part in reciprocal insurance funding. Behavior of a player depends upon her risk aversion. Through the scalar parameter of risk aversion partition function is defined. This partition function results in threshold behavior of the players. Anonymous and non-anonymous gambling models are considered. For both models the conditions of Nash equilibrium are found.
@article{MGTA_2011_3_4_a0,
     author = {Vladimir V. Breer and Dmitrii A. Novikov},
     title = {Threshold models of reciprocal insurance},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a0/}
}
TY  - JOUR
AU  - Vladimir V. Breer
AU  - Dmitrii A. Novikov
TI  - Threshold models of reciprocal insurance
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 3
EP  - 22
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a0/
LA  - ru
ID  - MGTA_2011_3_4_a0
ER  - 
%0 Journal Article
%A Vladimir V. Breer
%A Dmitrii A. Novikov
%T Threshold models of reciprocal insurance
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 3-22
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a0/
%G ru
%F MGTA_2011_3_4_a0
Vladimir V. Breer; Dmitrii A. Novikov. Threshold models of reciprocal insurance. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/MGTA_2011_3_4_a0/

[1] Breer V. V., “Teoretiko-igrovye modeli konformnogo kollektivnogo povedeniya”, Avtomatika i telemekhanika (to appear)

[2] Breer V. V., “Teoretiko-igrovaya model neanonimnogo porogovogo konformnogo povedeniya”, Upravlenie bolshimi sistemami, 31, 2010, 162–176

[3] Burkov V. N., Zalozhnev A. Yu., Kulik O. S., Novikov D. A., Mekhanizmy strakhovaniya v sotsialno-ekonomicheskikh sistemakh, IPU RAN, M., 2002

[4] Burkov V. N., Novikov D. A., Kak upravlyat proektami, Sinteg, M., 1997

[5] Gubko M. V., Novikov D. A., Teoriya igr v upravlenii organizatsionnymi sistemami, Sinteg, M., 2002

[6] Ivashkin E. I., Vzaimnoe strakhovanie, Rossiiskaya ekonomicheskaya akademiya, M., 2000

[7] Neiman D., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970 | MR

[8] Novikov D. A., “Mekhanizmy strakhovaniya: pereraspredelenie riska i manipulirovanie informatsiei”, Problemy bezopasnosti pri chrezvychainykh situatsiyakh, 1997, no. 5, 44–55

[9] K. E. Turbina (sost.), Obschestva vzaimnogo strakhovaniya, Ankil, M., 1994

[10] Serbinovskii B. Yu., Garkusha V. N., Strakhovoe delo, Feniks, Rostov-na-Donu, 2000

[11] Fishbern P., Teoriya poleznosti dlya prinyatiya reshenii, Nauka, M., 1978 | MR

[12] I. B. MacNeil, G. J. Umphrey (eds.), Actuarial science, Advances in the statistical science, 6, Reidel, 1987

[13] Granovetter M., “Threshold models of collective behavior”, AJS, 83:6 (1978), 1420–1443

[14] Pratt J., “Risk aversion in the small and in the large”, Econometrica, 52:1 (1964), 122–136 | DOI | MR