Influence of production function parameters on the solution and value function in optimal control problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 85-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with economical growth models [4, 19] and corresponding optimal control problems with infinite time horizon [2, 14, 17]. The production function for the model of economic growth is selected from the class of exponential functions of the Cobb–Douglas type (a nonlinear model). For this class, solutions of the corresponding optimal control problems are constructed within the framework of the Pontryagin maximum principle and their asymptotic behavior is investigated. Namely, trends of value functions are analyzed when the elasticity coefficient of the Cobb–Douglas production function tends to unit. In the limit case when the elasticity coefficient equals to unit the optimal control problem has several specific features: (1) the production function transforms to a linear function; (2) the property of strictly concavity of the production function is disappeared; (3) optimal trajectories and the value function for the linear optimal control problem can be constructed analytically. It is shown that optimal trajectories and value functions of non-linear models converge to corresponding solutions of the linear model when the elasticity coefficient grows up to unit. It is investigated changes of qualitative properties of Hamiltonian systems and the series of value functions when the elasticity parameter grows. The paper is completed by results of numerical experiments.
Keywords: optimal control, value function, dynamical systems.
@article{MGTA_2011_3_3_a4,
     author = {A. M. Tarasyev and A. A. Usova},
     title = {Influence of production function parameters on the solution and value function in optimal control problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {85--115},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/}
}
TY  - JOUR
AU  - A. M. Tarasyev
AU  - A. A. Usova
TI  - Influence of production function parameters on the solution and value function in optimal control problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 85
EP  - 115
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/
LA  - ru
ID  - MGTA_2011_3_3_a4
ER  - 
%0 Journal Article
%A A. M. Tarasyev
%A A. A. Usova
%T Influence of production function parameters on the solution and value function in optimal control problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 85-115
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/
%G ru
%F MGTA_2011_3_3_a4
A. M. Tarasyev; A. A. Usova. Influence of production function parameters on the solution and value function in optimal control problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 85-115. http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/

[1] Adiatulina R. A., Tarasev A. M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikladnaya matematika i mekhanika, 51 (1987), 531–537 | MR | Zbl

[2] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 5–271 | MR | Zbl

[3] Nikolskii M. S., “O lokalnoi lipshitsevosti funktsii Bellmana v odnoi optimizatsionnoi zadache”, Optimalnoe upravlenie i differentsialnye igry, Tr. IMM, 10, no. 2, 2004, 106–115 | MR | Zbl

[4] Arrow K. J., “Application of Control Theory to Economic Growth”, Mathematics of the Decision Sciences, 1968, no. 2, 85–119 | MR | Zbl

[5] Capuzzo Dolcetta I., “On a discrete approximation of the Hamilton-Jacobi of dynamic programming”, Applied Mathematics and Optimization, 4 (1983), 367–377 | MR

[6] Falcone M., “A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 15 (1987), 1–13 | DOI | MR | Zbl

[7] Falcone M., “Corrigenda: A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 23 (1991), 213–214 | DOI | MR | Zbl

[8] Feichtinger G., Veliov V. M., “On a Distributed Control Problem Arising in Dynamic Optimization of a Fixed-Size Population”, SIAM J. Optim., 18:3 (2007.), 980–1003 | DOI | MR | Zbl

[9] Grossman G. M., Helpman E., Innovation and Growth in the Global Economy, MIT Press, Cambridge, Massachusetts, 1991

[10] Hartman Ph., Ordinary Differential Equations, J. Wiley and Sons, N.Y.–London–Sydney, 1964 | MR | Zbl

[11] Intriligator M., Mathematical Optimization and Economic Theory, Prentice-Hall, N.Y., 1971 | MR

[12] Krasovskii A. A., Assessment of the Impact of Aggregated Economic Factors on Optimal Consumption in Models of Economic Growth, IIASA Interim Report IR-06-050, 2006

[13] Krasovskii A. N., Krasovskii N. N., Control under Lack of Information, Birkhauser, Boston, 1995 | MR

[14] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, N.Y.–Berlin, 1988 | MR | Zbl

[15] Krasovskii A. A., Tarasyev A. M., “Conjugation of Hamiltonian Systems in Optimal Control Problems”, Preprints of the 17th World Congress of the International Federation of Automatic Control IFAC, 2008, 7784–7789

[16] Latushkin Ya. A., Ushakov V. N., “The stability defect of sets in game control problems”, Control, stability, and inverse problems of dynamics, Proceedings of the Institute of Mathematics and Mechanics, 12, no. 2, 2006, 178–194 | MR | Zbl

[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR | Zbl

[18] Shell K., “Applications of Pontryagin's Maximum Principle to Economics”, Mathematical Systems Theory and Economics, 1 (1969), 241–292 | DOI | MR | Zbl

[19] Solow R. M., Growth Theory: An Exposition, Oxford University Press, New York, 1970

[20] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhauser, Boston, 1995 | MR

[21] Subbotina N. N., “Singular approximations of minimax and viscosity solutions to Hamilton–Jacobi equations”, Mathematical control theory, differential games, Proceedings of the Institute of Mathematics and Mechanics, 6, no. 1, 2000, 190–208 | MR | Zbl

[22] Tarasyev A. M., Uspenskii A. A., Ushakov V. N., “Approximation schemes for constructing minimax solutions of Hamilton–Jacobi equations”, Izvestiya RAN. Technical Cybernetics, 1994, no. 3, 173–185 | MR

[23] Tarasyev A. M., Watanabe C., “Optimal Dynamics of Innovation in Models of Economic Growth”, Journal of Optimization Theory and Applications, 108 (2001), 175–203 | DOI | MR | Zbl