Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2011_3_3_a4, author = {A. M. Tarasyev and A. A. Usova}, title = {Influence of production function parameters on the solution and value function in optimal control problem}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {85--115}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/} }
TY - JOUR AU - A. M. Tarasyev AU - A. A. Usova TI - Influence of production function parameters on the solution and value function in optimal control problem JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2011 SP - 85 EP - 115 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/ LA - ru ID - MGTA_2011_3_3_a4 ER -
%0 Journal Article %A A. M. Tarasyev %A A. A. Usova %T Influence of production function parameters on the solution and value function in optimal control problem %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2011 %P 85-115 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/ %G ru %F MGTA_2011_3_3_a4
A. M. Tarasyev; A. A. Usova. Influence of production function parameters on the solution and value function in optimal control problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 85-115. http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a4/
[1] Adiatulina R. A., Tarasev A. M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikladnaya matematika i mekhanika, 51 (1987), 531–537 | MR | Zbl
[2] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257, 2007, 5–271 | MR | Zbl
[3] Nikolskii M. S., “O lokalnoi lipshitsevosti funktsii Bellmana v odnoi optimizatsionnoi zadache”, Optimalnoe upravlenie i differentsialnye igry, Tr. IMM, 10, no. 2, 2004, 106–115 | MR | Zbl
[4] Arrow K. J., “Application of Control Theory to Economic Growth”, Mathematics of the Decision Sciences, 1968, no. 2, 85–119 | MR | Zbl
[5] Capuzzo Dolcetta I., “On a discrete approximation of the Hamilton-Jacobi of dynamic programming”, Applied Mathematics and Optimization, 4 (1983), 367–377 | MR
[6] Falcone M., “A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 15 (1987), 1–13 | DOI | MR | Zbl
[7] Falcone M., “Corrigenda: A numerical approach to the infinite horizon problem of deterministic control theory”, Applied Mathematics and Optimization, 23 (1991), 213–214 | DOI | MR | Zbl
[8] Feichtinger G., Veliov V. M., “On a Distributed Control Problem Arising in Dynamic Optimization of a Fixed-Size Population”, SIAM J. Optim., 18:3 (2007.), 980–1003 | DOI | MR | Zbl
[9] Grossman G. M., Helpman E., Innovation and Growth in the Global Economy, MIT Press, Cambridge, Massachusetts, 1991
[10] Hartman Ph., Ordinary Differential Equations, J. Wiley and Sons, N.Y.–London–Sydney, 1964 | MR | Zbl
[11] Intriligator M., Mathematical Optimization and Economic Theory, Prentice-Hall, N.Y., 1971 | MR
[12] Krasovskii A. A., Assessment of the Impact of Aggregated Economic Factors on Optimal Consumption in Models of Economic Growth, IIASA Interim Report IR-06-050, 2006
[13] Krasovskii A. N., Krasovskii N. N., Control under Lack of Information, Birkhauser, Boston, 1995 | MR
[14] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer, N.Y.–Berlin, 1988 | MR | Zbl
[15] Krasovskii A. A., Tarasyev A. M., “Conjugation of Hamiltonian Systems in Optimal Control Problems”, Preprints of the 17th World Congress of the International Federation of Automatic Control IFAC, 2008, 7784–7789
[16] Latushkin Ya. A., Ushakov V. N., “The stability defect of sets in game control problems”, Control, stability, and inverse problems of dynamics, Proceedings of the Institute of Mathematics and Mechanics, 12, no. 2, 2006, 178–194 | MR | Zbl
[17] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR | Zbl
[18] Shell K., “Applications of Pontryagin's Maximum Principle to Economics”, Mathematical Systems Theory and Economics, 1 (1969), 241–292 | DOI | MR | Zbl
[19] Solow R. M., Growth Theory: An Exposition, Oxford University Press, New York, 1970
[20] Subbotin A. I., Generalized solutions of first-order PDEs: The dynamical optimization perspective, Birkhauser, Boston, 1995 | MR
[21] Subbotina N. N., “Singular approximations of minimax and viscosity solutions to Hamilton–Jacobi equations”, Mathematical control theory, differential games, Proceedings of the Institute of Mathematics and Mechanics, 6, no. 1, 2000, 190–208 | MR | Zbl
[22] Tarasyev A. M., Uspenskii A. A., Ushakov V. N., “Approximation schemes for constructing minimax solutions of Hamilton–Jacobi equations”, Izvestiya RAN. Technical Cybernetics, 1994, no. 3, 173–185 | MR
[23] Tarasyev A. M., Watanabe C., “Optimal Dynamics of Innovation in Models of Economic Growth”, Journal of Optimization Theory and Applications, 108 (2001), 175–203 | DOI | MR | Zbl