Stable coalitional partition in discrete-time bioresource management problem
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 39-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a discrete-time game model related to a bioresource management problem (fish catching) is considered. We divide a fishery into regions, which are exploited by two types of players. We assume that there are migratory exchanges between the regions of the reservoir. Here the players of each type can form coalition, i.e. there can be two coalitions and single players of each type in the game. The well-known concepts of external and internal stability are considered and we present the new concept of coalitional stability.
Keywords: dynamic games, bioresource management problem, internal and external stability, coalitional stability.
@article{MGTA_2011_3_3_a2,
     author = {Anna N. Rettieva},
     title = {Stable coalitional partition in discrete-time bioresource management problem},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {39--66},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a2/}
}
TY  - JOUR
AU  - Anna N. Rettieva
TI  - Stable coalitional partition in discrete-time bioresource management problem
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 39
EP  - 66
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a2/
LA  - ru
ID  - MGTA_2011_3_3_a2
ER  - 
%0 Journal Article
%A Anna N. Rettieva
%T Stable coalitional partition in discrete-time bioresource management problem
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 39-66
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a2/
%G ru
%F MGTA_2011_3_3_a2
Anna N. Rettieva. Stable coalitional partition in discrete-time bioresource management problem. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 39-66. http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a2/

[1] Mazalov V. V., Rettieva A. N., “Usloviya, stimuliruyuschie ratsionalnoe povedenie, v diskretnykh zadachakh upravleniya bioresursami”, Doklady AN, 432:3 (2010), 308–311 | MR | Zbl

[2] Petrosyan L. A., Danilov N. N., Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomsk. un-ta, Tomsk, 1982 | MR | Zbl

[3] D'Aspremont C., Jacquemin A., Gabszewicz J. J., Weymark J. A., “On the stability of collusive price leadership”, Can. J. Econ., 16:1 (1983), 17–25 | DOI | MR

[4] De Zeeuw A., “Dynamic effects on stability of international environmental agreements”, J. of Environmental Economics and Management, 55 (2008), 163–174 | DOI | Zbl

[5] Fisher R. D., Mirman L. J., “The complete fish wars: biological and dynamic interactions”, J. of Environmental Economics and Management, 30 (1996), 34–42 | DOI

[6] Levhari D., Mirman L. J., “The great fish war: an example using a dynamic Cournot-Nash solution”, The Bell J. of Economics, 11:1 (1980), 322–334 | DOI | MR

[7] Mazalov V. V., Rettieva A. N., “Bioresource management problem with changing area for fishery”, Game Theory and Applications, 13 (2008), 101–110 | MR

[8] Mazalov V. V., Rettieva A. N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI

[9] Petrosjan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. of Economic Dynamic and Control, 7 (2003), 381–398 | DOI | MR | Zbl

[10] Pintassilgo P., Lindroos M., “Coalition formation in straddling stock fisheries: a partition function approach”, International Game Theory Review, 10 (2008), 303–317 | DOI | MR | Zbl