Optimal functors in dual categories of games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 17-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dual categories of so called non-cooperative non-strategiс games/cogames are constructed. In contrast to classical non-cooperative games, in these categories the active players differ from the interested ones, so that games and cogames associate them in two different ways. The Nash-equilibrium concept is modified for each of these categories, and it is proved that for both of them this generalized equilibrium has a fundamental categorial property – functorness. Based on that fact, a general axiomatic definition of optimal functor is given. Several optimal equilibrium-like functors are constructed, including the strongest and the weakest ones.
Keywords: non-cooperative games, categories of games, cogames, equilibrium points, optimal functors, solution concepts.
@article{MGTA_2011_3_3_a1,
     author = {Victor E. Lapitsky},
     title = {Optimal functors in dual categories of games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {17--38},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a1/}
}
TY  - JOUR
AU  - Victor E. Lapitsky
TI  - Optimal functors in dual categories of games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 17
EP  - 38
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a1/
LA  - ru
ID  - MGTA_2011_3_3_a1
ER  - 
%0 Journal Article
%A Victor E. Lapitsky
%T Optimal functors in dual categories of games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 17-38
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a1/
%G ru
%F MGTA_2011_3_3_a1
Victor E. Lapitsky. Optimal functors in dual categories of games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 17-38. http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a1/

[1] Vorobev N., Osnovy teorii igr. Beskoalitsionnye igry, Nauka, Moskva, 1984 | MR

[2] Gelfand S., Manin Yu., Gomologicheskaya algebra, Nauka, Moskva, 1989 | MR | Zbl

[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, Moskva, 1961

[4] Lapitskii V., “K teorii printsipov optimalnosti v beskoalitsionnykh igrakh”, Matematicheskie metody v sotsialnykh naukakh, 18, Vilnyus, 1985, 35–56 | MR

[5] Maklein S., Kategorii dlya rabotayuschego matematika, FIZMATLIT, Moskva, 2004

[6] Aumann R. J., Maschler M., “The bargaining set for cooperative games”, Advances in Game Theory. Annals of Math. Studies, 52 (1964), 443–476 | MR | Zbl

[7] Aumann R. J., “Cooperative games without side payments”, Recent Advances in Game Theory, Princeton Univ. Conferences, 1961, 83–100

[8] Lapitsky V., “On some categories of games and corresponding equilibria”, Int. Game Theory Rev., 1:2 (1999), 169–185 | DOI | MR | Zbl

[9] Lapitsky V., “A categorical approach to the optimality in non-cooperative games”, LGS3, Siena, 2003, 215–219