Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2011_3_3_a0, author = {Oleg I. Il'in}, title = {On a~one control game problem for the age-structured population}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {3--16}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a0/} }
Oleg I. Il'in. On a~one control game problem for the age-structured population. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/MGTA_2011_3_3_a0/
[1] Abakumov A. I., Upravlenie i optimizatsiya v modelyakh ekspluatiruemykh populyatsii, Dalnauka, Vladivostok, 1993, 129 pp.
[2] Biverton R., Kholt S., Dinamika chislennosti promyslovykh ryb, Pischevaya promyshlennost, M., 1969, 248 pp.
[3] R. A. Poluektov (red.), Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974, 456 pp.
[4] Zakharov V. V., Petrosyan A. A., “Teoretiko-igrovoi podkhod k probleme okruzhayuschei sredy”, Vestnik Leningr. un-ta, 1981, no. 1, Ser. matem., mekh., astronom., No 1, 26–32 | Zbl
[5] Ilin O. I., “Ob optimalnoi ekspluatatsii populyatsii ryb s vozrastnoi strukturoi”, Sibirskii zhurnal industrialnoi matematiki, 10:3(31) (2007), 43–57 | MR | Zbl
[6] Ilin O. I., Zadachi optimizatsii v nepreryvnykh modelyakh ekspluatiruemykh populyatsii s vozrastnoi strukturoi, Avtoref. diss. $\dots$ kand. fiz.-mat. nauk, KamchatNIRO, Petropavlovsk-Kamchatskii, 2009, 22 pp.
[7] Mazalov V. V., Rettieva A. N., “Ob odnoi zadache upravleniya bioresursami”, Obozrenie prikladnoi i promyshlennoi matematiki, 9:2 (2002), 293–306
[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Gos. izd-vo fiz.-mat. lit., M., 1961, 391 pp. | MR | Zbl
[9] Rettieva A. N., Metody dinamicheskikh igr v zadache upravleniya bioresursami: podkhod s vvedeniem zapovednoi zony, Avtoref. diss. $\dots$ kand. fiz.-mat. nauk, IPMI KarNTs RAN, Petrozavodsk, 2004, 23 pp.
[10] Rikker U. E., Metody otsenki i interpretatsiya biologicheskikh pokazatelei populyatsii ryb, Pischevaya promyshlennost, M., 1979, 408 pp.
[11] Banks H. T., Kappel F., Wang C., “Weak solutions and differentiability for size-structured population models”, Estimation and control of distributed parameter systems, Int. Ser. Numer. Math., 100, 1991, 35–50 | MR | Zbl
[12] Chan W. L., Guo Bao Zhu, “Overtaking optimal control problem of age-dependent populations with infinite horizon”, J. of Mathematical Analysis and Applications, 150 (1990), 41–53 | DOI | MR | Zbl
[13] Feichtinger G., Tragler G., Veliov V. M., “Optimality conditions for age-structured control systems”, J. of Mathematical Analysis and Applications, 288 (2003), 47–68 | DOI | MR | Zbl
[14] von Foerster H., “Some remarks on changing populations”, The Kinetics of cellular proliferation, N.Y., 1959, 382–407
[15] Hilborn R., Walters C. J., Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty, Chapman and Hall, N.Y., 1992, 570 pp.
[16] Sinko J. W., Streifer W., “A new model for age-sized structure for population”, Ecology, 48 (1967), 910–918 | DOI