Time-optimal pursuit of two evaders in given succession
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 102-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies two games, $\Gamma_{1,2}$ and $\Gamma_{2,1}$, of a faster pursuer $P$ and two slower evaders $E_1$ and $E_2$ controlled by a player $E$. $P$$E_1$ and $E_2$ move in the plane with simple motions. In $\Gamma_{l,3-l}$, $P$ strives to approach $E_l$, and then capture $E_{3-l}$ in minimum total time, $l\in\{1,2\}$. $\Gamma_{l,3-l}$ models tactic operations where $E$ sets a decoy to seduce $P$ to follow it, and $P$ is to construct a pursuit strategy and evaluate a guaranteed total time needed to reclassify the decoy ($E_l$) and to seize the real target ($E_{3-l}$). $\Gamma_{l,3-l}$ is divided into two stages. The second stage is a simple pursuit game $\Gamma^{II}_{l,3-l}$ with a known solution. At the first stage $\Gamma^I_{l,3-l}$, the payoff is equal to the sum of the duration and the value of $\Gamma^{II}_{l,3-l}$ at the terminal state. We analyze $\Gamma^I_{1,2}$ in detail using the classic characteristics for Isaacs–Bellman equation.
Keywords: Isaacs' approach, discriminating feedback strategies, singular surfaces, directionally differentiable value function
Mots-clés : decoy.
@article{MGTA_2011_3_2_a5,
     author = {Igor I. Shevchenko},
     title = {Time-optimal pursuit of two evaders in given succession},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/}
}
TY  - JOUR
AU  - Igor I. Shevchenko
TI  - Time-optimal pursuit of two evaders in given succession
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 102
EP  - 117
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/
LA  - ru
ID  - MGTA_2011_3_2_a5
ER  - 
%0 Journal Article
%A Igor I. Shevchenko
%T Time-optimal pursuit of two evaders in given succession
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 102-117
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/
%G ru
%F MGTA_2011_3_2_a5
Igor I. Shevchenko. Time-optimal pursuit of two evaders in given succession. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 102-117. http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/

[1] Abramyants T. G., Maslov E. P., Rubinovich E. Ya., “Prosteishaya differentsialnaya igra poocherednogo presledovaniya”, Avtomatika i telemekhanika, 1980, no. 8, 5–15 | MR | Zbl

[2] Abramyants T. G., Maslov E. P., Rubinovich E. Ya., “Upravlenie podvizhnymi ob'ektami v usloviyakh iskusstvenno organizovannoi nepolnoty informatsii”, Problemy upravleniya, 2005, no. 4, 75–81

[3] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[4] Kamneva L. V., “Dostatochnye usloviya stabilnosti dlya funktsii tseny differentsialnoi igry v terminakh singulyarnykh tochek”, Prikladnaya matematika i mekhanika, 67:3 (2003), 366–383 | MR | Zbl

[5] Krasovskii N. N., Kotelnikova A. N., “Unifikatsiya differentsialnykh igr, obobschennye resheniya uravnenii tipa Gamiltona–Yakobi, stokhasticheskii povodyr”, Differentsialnye uravneniya, 15:11 (2009), 1618–1633 | MR

[6] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[7] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo Leningr. un-ta, L., 1977 | MR | Zbl

[8] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy analiticheskoi optimizatsii, IKI, M.–Izhevsk, 2003

[9] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[10] Chikrii A. A., Kalashnikova S. F., “Presledovanie upravlyaemym ob'ektom gruppy ubegayuschikh”, Kibernetika, 1987, no. 4, 1–8 | MR

[11] Shevchenko I. I., “O poocherednom presledovanii”, Avtomatika i telemekhanika, 1981, no. 11, 54–59 | MR | Zbl

[12] Shevchenko I. I., “Prosteishaya model poocherednogo presledovaniya”, Avtomatika i telemekhanika, 1982, no. 4, 40–42 | MR

[13] Shevchenko I. I., “Poocherednoe presledovanie trekh ubegayuschikh”, Avtomatika i telemekhanika, 1983, no. 7, 70–75 | MR | Zbl

[14] Shevchenko I. I., Geometriya alternativnogo presledovaniya, Izd-vo Dalnevost. un-ta, Vladivostok, 2003

[15] Bernhard P., “Differential games: Isaacs equation”, System and Control Encyclopedia, ed. M. G. Singh, Pergamon Press, 1987, 1010–1017

[16] Breakwell J. V., Hagedorn P., “Point capture of two evaders in succession”, J. of Optim. Theory and Appl., 27:1 (1979), 90–97 | DOI | MR

[17] Lions P. L., Souganidis P. E., “Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs' equations”, SIAM J. of Control and Optimization, 23:4 (1985), 566–583 | DOI | MR | Zbl

[18] Melikyan A., Generalized characteristics of first order PDEs: applications in optimal control and differential games, Birkhäuser, Boston, 1998 | MR | Zbl

[19] Serov V. P., “Complete solution to differential game of feedback point capture of $m$ evaders by one pursuer in minimum total time”, Proceedings of the Eleventh Int. Symposium on Dynamic Games and Appl., ed. T. L. Vincent, Tucson, Arizona, 2004, 849–865