Time-optimal pursuit of two evaders in given succession
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 102-117

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies two games, $\Gamma_{1,2}$ and $\Gamma_{2,1}$, of a faster pursuer $P$ and two slower evaders $E_1$ and $E_2$ controlled by a player $E$. $P$$E_1$ and $E_2$ move in the plane with simple motions. In $\Gamma_{l,3-l}$, $P$ strives to approach $E_l$, and then capture $E_{3-l}$ in minimum total time, $l\in\{1,2\}$. $\Gamma_{l,3-l}$ models tactic operations where $E$ sets a decoy to seduce $P$ to follow it, and $P$ is to construct a pursuit strategy and evaluate a guaranteed total time needed to reclassify the decoy ($E_l$) and to seize the real target ($E_{3-l}$). $\Gamma_{l,3-l}$ is divided into two stages. The second stage is a simple pursuit game $\Gamma^{II}_{l,3-l}$ with a known solution. At the first stage $\Gamma^I_{l,3-l}$, the payoff is equal to the sum of the duration and the value of $\Gamma^{II}_{l,3-l}$ at the terminal state. We analyze $\Gamma^I_{1,2}$ in detail using the classic characteristics for Isaacs–Bellman equation.
Keywords: Isaacs' approach, discriminating feedback strategies, singular surfaces, directionally differentiable value function
Mots-clés : decoy.
@article{MGTA_2011_3_2_a5,
     author = {Igor I. Shevchenko},
     title = {Time-optimal pursuit of two evaders in given succession},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/}
}
TY  - JOUR
AU  - Igor I. Shevchenko
TI  - Time-optimal pursuit of two evaders in given succession
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 102
EP  - 117
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/
LA  - ru
ID  - MGTA_2011_3_2_a5
ER  - 
%0 Journal Article
%A Igor I. Shevchenko
%T Time-optimal pursuit of two evaders in given succession
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 102-117
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/
%G ru
%F MGTA_2011_3_2_a5
Igor I. Shevchenko. Time-optimal pursuit of two evaders in given succession. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 2, pp. 102-117. http://geodesic.mathdoc.fr/item/MGTA_2011_3_2_a5/