One objective of group pursuit linear recurrent differential games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 1, pp. 81-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the objective of group pursuit in linear recurrent differential games. There are sufficient conditions gained for non-standard conflict situation with equal possibilities in order to capture one runaway by group pursuers provided that fundamental matrix of $\dot x=A(t)x$ system is recurrent.
Keywords: differential game, group pursuit, the objective of capturing, recurrent function.
@article{MGTA_2011_3_1_a3,
     author = {Nadezhda A. Solovyova},
     title = {One objective of group pursuit linear recurrent differential games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a3/}
}
TY  - JOUR
AU  - Nadezhda A. Solovyova
TI  - One objective of group pursuit linear recurrent differential games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 81
EP  - 90
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a3/
LA  - ru
ID  - MGTA_2011_3_1_a3
ER  - 
%0 Journal Article
%A Nadezhda A. Solovyova
%T One objective of group pursuit linear recurrent differential games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 81-90
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a3/
%G ru
%F MGTA_2011_3_1_a3
Nadezhda A. Solovyova. One objective of group pursuit linear recurrent differential games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 1, pp. 81-90. http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a3/

[1] Bannikov A. S., “Ob odnoi zadache prostogo presledovaniya”, Vestnik Udmurtskogo un-ta. Seriya 1. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 3–11 | MR

[2] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 40–51

[3] Blagodatskikh A. I., “Pochti periodicheskie konfliktno upravlyaemye protsessy so mnogimi uchastnikami”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 83–86 | MR | Zbl

[4] Blagodatskikh A. I., “O zadache gruppovogo presledovaniya v nestatsionarnom primere Pontryagina”, Vestnik Udmurtskogo un-ta. Ser. Matematika, 2007, no. 1, 17–24

[5] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, MGU, M., 1990

[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[8] Petrov N. N., “Nestatsionarnyi primer Pontryagina s fazovymi ogranicheniyami”, Problemy upravleniya i informatiki, 2000, no. 4, 18–24 | MR

[9] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[10] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992