Game theory approach for supply chains optimization in case of deterministic demand
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 1, pp. 23-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper game theoretic mathematical models of inventory systems are treated. We consider a market, where several distributors are acting. Each distributor has warehouse for storage goods before supply to customers. Assume that demand for their goods has deterministic nature and depends on total supply or on prices of distributors. So we will consider quantitative and price competition among distributors. Distributors are considered as players in non-cooperative game. First we treat quantitative competition in context of model of Cournot. Then to consider price competition we use modified model of Bertrand. For modeling of control of inventory system we use the relaxation method of inventory regulation with admission of deficiency.
Keywords: Nash equilibrium, internal strategy, external strategy, distributor, non-cooperative game.
Mots-clés : optimal, demand
@article{MGTA_2011_3_1_a1,
     author = {Mansur G. Gasratov and Vicktor V. Zakharov},
     title = {Game theory approach for supply chains optimization in case of deterministic demand},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {23--59},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a1/}
}
TY  - JOUR
AU  - Mansur G. Gasratov
AU  - Vicktor V. Zakharov
TI  - Game theory approach for supply chains optimization in case of deterministic demand
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2011
SP  - 23
EP  - 59
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a1/
LA  - ru
ID  - MGTA_2011_3_1_a1
ER  - 
%0 Journal Article
%A Mansur G. Gasratov
%A Vicktor V. Zakharov
%T Game theory approach for supply chains optimization in case of deterministic demand
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2011
%P 23-59
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a1/
%G ru
%F MGTA_2011_3_1_a1
Mansur G. Gasratov; Vicktor V. Zakharov. Game theory approach for supply chains optimization in case of deterministic demand. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 3 (2011) no. 1, pp. 23-59. http://geodesic.mathdoc.fr/item/MGTA_2011_3_1_a1/

[1] Belyaev Yu. A., Defitsit, rynok i upravlenie zapasami, Izd-vo UDN, M., 1991, 230 pp.

[2] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 272 pp. | MR

[3] Grigorev M. N., Dolgov A. P., Uvarov S. A., Upravlenie zapasami v logistike: metody, modeli, informatsionnye tekhnologii, Uchebnoe posobie, Izd. dom “Biznes-pressa”, SPb., 2006, 368 pp.

[4] Grigorev M. N., Dolgov A. P., Uvarov S. A., Logistika, Uchebnoe posobie, Gardariki, M., 2006, 363 pp.

[5] Gromenko V. M., Primenenie metodov upravleniya zapasami v ekonomicheskikh zadachakh, MIU, M., 1981, 58 pp.

[6] Kukuliev G. Yu., “Nekotorye zadachi upravleniya zapasami portyaschegosya produkta”, Avtomatika i Telemekhanika, 1987, no. 12, 48–54 | MR | Zbl

[7] Kukushkin N .S., Morozov V. V., Teoriya neantagonisticheskikh igr, MGU, M., 1984, 103 pp.

[8] Mikityants S .R., Modeli protsessov materialno-tekhnicheskogo snabzheniya, ed. prof. A. A. Iotkovskii, Izd-vo LGU, L., 1974, 99 pp.

[9] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shk., Kn. dom Universitet, M., 1998, 300 pp. | MR | Zbl

[10] Tirol Zh., Rynki i rynochnaya vlast: teoriya organizatsii i promyshlennosti, Per. s angl. Yu. M. Dontsa, M. D. Fakirovoi, v 2-kh tomakh, v. 1, eds. A. S. Galperin, N. A. Zenkevich, In-t “Ekonomicheskaya shkola”, SPb., 2000, 328 pp.; т. 2, 455 с.

[11] Khedli Dzh., Uaitin T., Analiz sistem upravleniya zapasami, Per. s angl., Nauka, M., 1969, 512 pp.

[12] Cachon G. P., “Supply chain coordination with contracts”, Supply Chain Management: Design, Coordination and Operation, Handbook in Operations Research and Management Science, 11, Elsevier B. V., Amsterdam, 2003, 229–340

[13] Cachon G. P., Zipkin P. H., “Competitive and cooperative inventory policies in a two-stage supply chain”, Management Science, 45:7 (1999), 936–954 | DOI

[14] Gjerdrum J., Shah N., Papageorgiou L. G., “Transfer prices for multienterprise supply chain optimization”, Ind. Eng. Chem. Res., 40 (2001), 1650–1660 | DOI

[15] Haldey G., Whitin T. M., Analysis of inventory, Prentice-Hall, Englewood Cliffs, N.J., 1963

[16] Harris F., Operations and cost. Factory management series, A. W. Shaw, Chicago, 1915, 48–52

[17] Hax A. C., Candea D., Production and inventory management, Prentice-Hall, Englewood Cliffs, N.J., 1984

[18] Tersine R. J., Principles of inventory and materials management, Elsevier North Holland, Amsterdam, 1994 | MR