Mots-clés : bimatrix games
@article{MGTA_2010_2_4_a4,
author = {Anastasia V. Raygorodskaya},
title = {A $2\times2$ $\varepsilon$-best response stochastic two-step game},
journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
pages = {84--105},
year = {2010},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a4/}
}
Anastasia V. Raygorodskaya. A $2\times2$ $\varepsilon$-best response stochastic two-step game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 2 (2010) no. 4, pp. 84-105. http://geodesic.mathdoc.fr/item/MGTA_2010_2_4_a4/
[1] Vorobev N. N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, Moskva, 1985 | MR
[2] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, Moskva, 1969 | MR | Zbl
[3] Axelrod R., The Evolution of Cooperation, Basic Books, 1984
[4] Fudenberg D., Kreps D. M., “Learning mixed equilibria”, Games and Econ. Behavior, 5 (1993), 320–367 | DOI | MR | Zbl
[5] Hofbauer J., Sigmund K., The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, 1988 | MR | Zbl
[6] Kaniovski Yu. M., Kryazhimskiy A. V., Young H. P., “Learning equilibria in games played by heterogeneous populations”, Games and Economic Behavior, 31 (2000), 50–96 | DOI | MR | Zbl
[7] Kleimenov A. F., Kryazhimskiy A. V., “Minimum-noncooperative trajectories in repeated games”, Complex Dynamical Systems with Incomplete Information, eds. E. Reithmeier, G. Leitmann, Shaker Verlag, Aachen, 1999, 94–107
[8] Kryazhimskiy A. V., Osipov Yu. S., “On evolutionary-differential games”, Proc. of Steklov Math. Inst., 211, 1995, 257–287 | MR | Zbl
[9] Nowak M., Sigmund K., “The Alternating Prisoner's Dilemma”, J. Theor. Biol., 168 (1994), 219–226 | DOI
[10] Van der Laan G., Tieman X., “Evolutionary Game Theory and the Modeling of Economic Behavior”, De Economist, 146:1 (1998), 59–89 | DOI
[11] Weibull J., Evolutionary Game Theory, The M.I.T. Press, Cambridge, 1995 | MR